UNIVERSITY OF LONDON IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

BSc/MSci EXAMINATION (MATHEMATICS) MAY – JUNE 2003 This paper is also taken for the relevant examination for the Associateship

M3A10 Viscous Flow

DATE: 3rd June 2003

TIME: 10 am - 12 noon

Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

© University of London 2003

M3A10: 6 Pages

1. Define the strain-rate tensor e_{ij} , and the stress tensor σ_{ij} for an incompressible Newtonian fluid with viscosity μ and density ρ .

Such a fluid occupies a fixed volume V, bounded by a stationary surface S with unit normal n_i acted upon by a body force F_i . Define E, the total kinetic energy within V, and starting from the Cauchy momentum equation

$$\rho \frac{Du_i}{Dt} = F_i + \frac{\partial \sigma_{ij}}{\partial x_j} \; ,$$

show that

$$\frac{dE}{dt} = \int_S u_i \,\sigma_{ij} n_j \,dS + \int_V u_i F_i \,dV - 2\mu \int_V e_{ij} e_{ij} \,dV \;,$$

and interpret each term physically.

For a certain flow $e_{ij} = 0$ at every point within V. Express this relation in component form and show that

$$\frac{\partial u_1}{\partial x_1} = 0, \qquad \frac{\partial^2 u_1}{\partial x_2^2} = 0 = \frac{\partial^2 u_1}{\partial x_3^2} \qquad \text{and} \quad \frac{\partial^2 u_1}{\partial x_2 \partial x_3} = 0$$

Using these results and symmetry arguments, deduce that

$$\mathbf{u} = \mathbf{U} + \mathbf{\Omega} \wedge \mathbf{x}$$

for spatially constant vectors U and Ω , and interpret this result physically.

© University of London 2003

Turn over... M3A10 /Page 2 of 6 2. Flow is driven in the rigid channel a > y > -a by the oscillating pressure gradient

$$-\frac{\partial p}{\partial x} = G_0 + G_1 \cos \Omega t \; ,$$

where G_0 , G_1 and Ω are constant. Show that a solution to the incompressible Navier-Stokes equations of the form $\mathbf{u} = (u(y, t), 0, 0)$ with

$$u = u_0(y) + \Re e \left[u_1(y) e^{i\Omega t} \right] ,$$

is possible, where $\Re e$ denotes the real part.

Find u_0 and show that for a suitable real constant δ ,

$$u_1 = \frac{G_1}{\rho i \Omega} \left[1 - \frac{\cosh[(1+i)y/\delta]}{\cosh[(1+i)a/\delta]} \right] .$$

As $\Omega \to \infty$, show that the wall shear stress

$$\left. \mu \left. \frac{\partial u}{\partial y} \right|_{y=a} \rightarrow -aG_0 - G_1 \left(\frac{\mu}{2\rho\Omega} \right)^{1/2} \left[\cos\Omega t + \sin\Omega t \right].$$

Suppose $G_1 \gg G_0 > 0$. Discuss whether or not the velocity can be negative for some values of y and t.

3. In terms of cylindrical polar coordinates (r, θ, z) , a paint-scraper occupies the half-plane $\theta = \frac{1}{2}\pi$ and moves with constant speed U parallel to a stationary table at $\theta = 0$. The quadrant $\frac{1}{2}\pi > \theta > 0$ contains very viscous paint. Starting from the unforced Stokes equations, show that the two-dimensional flow can be represented by

$$\nabla^2 \omega = 0$$
 where $\omega = -\nabla^2 \psi$ and $\mathbf{u} = \left(\frac{1}{r}\frac{\partial \psi}{\partial \theta}, -\frac{\partial \psi}{\partial r}, 0\right)$.

Write down the four boundary conditions to be applied at $\theta = 0, \frac{1}{2}\pi$ and find a solution

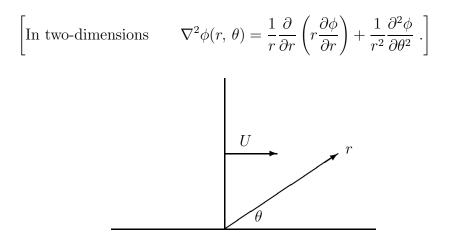
$$\omega = -r^{n-2}g(\theta)$$
 and $\psi = r^n f(\theta)$ in $0 < \theta < \frac{1}{2}\pi$

where n is a value suggested by the boundary conditions. Show that the tangential traction on the table surface,

$$\left. \frac{\mu}{r} \frac{\partial u_r}{\partial \theta} \right|_{\theta=0} = \frac{\pi \mu U}{\frac{1}{4}\pi^2 - 1} \frac{1}{r} \; .$$

What problem is encountered when evaluating the total stress per unit length in the z-direction exerted on a small length of table 0 < r < a?

Suggest a reason for the difficulty, and a manner in which the model could be made more realistic.



Turn over... M3A10 /Page 4 of 6

4. Write down the lubrication equations for a cylindrically symmetric flow

$$\mathbf{u} = (u_r(r, z), 0, u_z(r, z))$$

and state the conditions under which they can be expected to hold.

Two coaxial discs of radius a are at $z = \pm h(t)$, where $a \gg h$. Use lubrication theory to show that the pressure distribution between the discs is

$$p=p_0+\frac{3\mu}{4h^3}\frac{dh}{dt}(r^2-a^2),$$

stating any additional assumptions you make.

A constant, outwards normal force F is applied to each disc in an attempt to separate them. If initially the discs are a distance h_0 apart, show that the time required to pull them apart is

$$t = \frac{3\pi\mu a^4}{16h_0^2 F} \; ,$$

and comment briefly on this result.

$$\left[\text{In axisymmetry,} \quad \nabla \cdot \mathbf{u} = \frac{1}{r} \frac{\partial}{\partial r} \left(r u_r \right) + \frac{\partial u_z}{\partial z} \; .\right]$$

5. A solid boundary at y = 0 has a slit in it at x = 0 through which incompressible fluid is sucked. The inviscid equations have the solution $\mathbf{u} = \nabla \phi$ where

$$\phi = -Q \ln r$$
 and $r^2 = x^2 + y^2$.

Calculate the slip velocity on y = 0 for x > 0 and write down the boundary layer equations and boundary conditions for this problem.

Seek a similarity solution with

$$\psi = Ax^a f(\eta)$$
 where $\eta = Byx^b$.

and show that a = 0 and b = -1. Choosing $A = -(Q\nu)^{1/2}$ and $B = (Q/\nu)^{1/2}$, deduce that

$$f''' + 1 - (f')^2 = 0 ,$$

and state the boundary conditions on f.

Verify that the function

$$f'(\eta) = 1 - \frac{6}{1+c}$$
 where $c = \cosh(\eta\sqrt{2} + \alpha)$,

solves the problem, provided that the constant α takes one of two values.

Sketch the velocity profile f' roughly in each case, and state which value of α is more plausible physically.