
M3A10 Viscous Flow: Boundary Layer Theory

The Navier-Stokes equations behave well for small Reynolds number. It can be shown that
a solution exists, and we proved that this solution was unique. Furthermore, the solutions
are smooth and regular. At high Reynolds number the nonlinear u · ∇u term gains in
significance and the situation is very different. Existence is hard to prove, and there may
be more than one possible solution. Smooth, steady symmetric flows may suddenly become
unsteady and asymmetric for no obvious reason. Laminar flows may become unstable and
turbulence may develop. Furthermore, singular regions may develop, especially near solid
boundaries. These thin layers near boundaries are known as “boundary layers.”

To understand why this occurs, consider the following simple ODE for y(x) in terms
of a small positive parameter ε

εy′′(x) + y′(x) = −1 with y(0) = 0 = y(1) . (1)

This problem has the solution

y = −x+
1 + e−x/ε

1 + e−1/ε
' 1− x+ e−x/ε when ε� 1. (2)

This function is essentially 1 − x except when x ∼ ε. Over a layer of thickness ∼ ε near
x = 0, the solution falls from 1 to 0. This is an example of a boundary layer. If we
substitute ε = 0 in (2), we obtain a 1st order ODE, so we cannot impose two boundary
conditions on it. The equation can only satisfy both boundary conditions by arranging for
very high gradients near the boundary.

The Navier-Stokes equations behave similarly for very small viscosity (high Reynolds
numbers). The viscosity µ multiplies the highest derivative in the equation, so that in
the limit µ → 0, one of the boundary conditions cannot be satisfied. Inviscid flows may
have slip velocities over solid walls. When the viscosity is small but non-zero we therefore
anticipate that thin layers may develop near the walls across which the tangential velocity
adjusts to zero fromits inviscid value. Let the layer thickness be δ, and let x and y be
coordinates locally tangential and parallel to the wall, with typical scales of variation L
(say) and δ. Let the corresponding velocity components u and v have typical scales U0

and V0 in the boundary layer. Then from the continuity condition

ux + vy = 0 =⇒ V0 ∼ U0δ/L ,

so that just as in lubrication theory, the normal velocity is small. Note that this requires
that terms like uux and vuy are of similar order. Normal derivatives in the viscous term
will be much larger than the tangential derivatives, so that ν∇2u ' νuyy ∼ νU0/δ

2.
We consider steady, 2-D flow. “Prandtl’s Boundary Layer Hypothesis” states that in

the layer the inertial terms and the viscous terms should balance. This suggests that the
scale δ must be such that

uux ∼ νuyy =⇒
U2

0

L
∼
νU0

δ2
=⇒ δ2 ∼

νL

U0
. (3)



Now as y increases and we leave the boundary layer, we expect the viscous terms to become
negligible. The flow should approach the inviscid flow solution, for which there is a slip
velocity, i.e. u → U(x) as y/δ → ∞. This flow will have a pressure field associated with
it with a scale p0 ∼ ρU2

0 . We therefore assume that px/ρ ∼ uux in the x-momentum
equation. However, py is a factor of (L/δ) larger than px, while uvx is a factor of (δ/L)
smaller than uux. It follows, just as for lubrication theory, that py = 0, so that the pressure
does not vary across the layer. Putting all this together, we obtain the boundary layer
equations

uux + vuy = − 1
ρ
px + νuyy, py = 0, ux + vy = 0 . (4)

The pressure gradient px can be evaluated just outside the layer where the viscous terms
are negligible, and where u = U(x). The boundary layer equations then take the form

uux + vuy = UU ′(x) + νuyy , ux + vy = 0 . (5)

An appropriate set of boundary conditions are

u = v = 0 on y = 0, u→ U(x) as y →∞ . (6)

A single equation can be obtained by introducing a streamfunction ψ(x, y) where u = ψy
and v = −ψx. Equation (5) then takes the form

ψyψxy − ψxψyy = UU ′(x) + νψyyy . (7)

Notes on the boundary layer equations:
(1) Often it is convenient to nondimensionalise the problem. The pararmeter ν can

be removed by rescaling ψ and y suitably. The boundary layer thickness δ = L(Re)
−1/2,

where Re = U0L/ν is the Reynolds number.
(2) As y →∞ we cannot require that v → 0. There is a small velocity (∼ δ) flowing

out of the boundary layer.
(3) The boundary layer equation (5) is parabolic in x and y, with x taking the part

of the time-like variable (compare ut = uxx.) This means we must integrate downstream,
in the direction of increasing x if u > 0. There is practically no upstream influence in
boudary layers, whereas the full steady Navier-Stokes equations are elliptic.

(4) As we integrate the equations downstream, the equations can behave well, or they
can develop a singularity. In the latter case, the boundary layer assumptions break down,
and the boundary layer separates. This leads to the formation of a large wake, and
completely alters the external flow structure.

(5) Generally speaking, separation will not occur while UU ′ > 0, a situation described
as a ‘favourable pressure gradient.’ Once U begins to decrease, and the pressure gradient
is unfavourable, then separation is likely. For example, irrotational flow around a cylinder
predicts U(x) = sin(x), where x denotes length around the circumference of the cylinder.
Now UU ′ > 0 until x = 1

2π, when the surface slip-velocity begins to slow down. The
layer separates off shortly after that point. The design of bodies intended to move at high
Reynolds numbers (e.g. fish, aeroplanes) is governed by the need to inhibit or minimise
separation of the boundary layer, a process called “streamlining.”


