M3A10: The energy equation

Let us now consider the kinetic energy of the fluid.
Taking, again, V(1) as an arbitrary material volume, the kinetic energy

of the fluid within V is
E= /V Loful?dV. (1.22)

Thus the rate of change of this energy is given by the Cauchy equation (1.19)
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Now the final term here may be written
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We have used here the divergence theorem (0.8), the symmetry of the stress
tensor (so that ¢;;Q;; = 0) and the incompressibility relation V-u = ¢; = 0.
We have therefore shown that
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The first two terms on the right represent the rate of working by body and
surface forces on the fluid within V| and the final term is therefore the rate
of energy dissipation due to viscosity, which we can think of as a kind of
friction. The rate of viscous heating ® per unit volume is thus

o = 0i;€i5 = 2/162']'62']'.

The second law of thermodynamics demands that ® and hence g must be
positive.

This heating can change the temperature T in the fluid. If then the
density or viscosity depend on temperature, a further equation involving
convection and diffusion of heat, is needed to determine 7T'(x,t). We shall
not pursue this (interesting) complication in this course.



Boundary Conditions

In order to determine the velocity u(x,?) and pressure p(x,t) in some region
V., we need to know what boundary conditions to apply on the surface 9.
The appropriate conditions to apply are that the velocity and the total stress
should be continuous across any interface. In this course ‘total stress’ is just
the fluid stress o;; and possibly surface tension (see below), but there could
also be electromagnetic stresses, for example.

(a) Fluid/solid boundaries: Here, it is sufficient to require that the
fluid velocity u be the same as the velocity of the boundary, so that for a
stationary boundary

u=0. (1.24)

Note that (1.24) requires that the tangential velocity components be zero as
well as the normal component. In inviscid fluid mechanics (M3A2) only
the normal velocity need be continuous at an interface, and a ‘slip velocity’
must be permitted. The presence in the Navier-Stokes equation of the second
derivative pV?u requires an extra boundary condition.

A solid boundary is able to provide whatever stress is needed to support
the fluid motion. The continuity in stress then enables us to calculate the
force on the solid due to the fluid.

(b) Fluid/fluid boundaries: These are more complicated, because the
interface can move. Furthermore, it is a physical fact that an extra normal
stress, due to surface tension, acts on the interface. This extra stress takes
the form yK(x) where v is the positive surface tension constant, and K is
the curvature of the fluid surface, which can be defined by K = V - n where
n is the unit normal to the interface.

If one of the fluids is dynamically negligible, as often happens with a
liquid/gas interface, then we can treat one fluid as having a constant pressure
po and neglect its motion. If such a surface is stationary, then the appropriate
boundary conditions to apply on the other fluid are zero normal velocity and
zero tangential stress. (If the normal stress does not balance then the surface
will not be stationary). More generally, if we describe the surface position
at time ¢ by the function ((x,?) = 0, then the boundary conditions can be
written
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In M3A2, u = 0 and the tangential stress condition is trivial.

0 and  o;n; = —(vK + po)n; . (1.25)



