M3A10: Problem Sheet 1: The Navier-Stokes Equations
On this sheet p and p denote the density and viscosity of a Newtonian fluid.

Show that the simple shear flow u = (ay, 0, 0) for some constant a can be written as
the sum of a solid body rotation and a two-dimensional strain. What must the pressure
distribution be to maintain this flow in the absence of any body forces?

If the flow occurs between two planar plates at y = 0 and y = h, calculate the force per
unit area on each plate.

A two-dimensional flow field is defined in Cartesian coordinates by u = (v,, —t,, 0) where
the streamfunction

Y = apr® + a12%y + asxy® + asy? for constant ag, a, as, as.

Show that the viscous part of the total surface force acting on any fluid region of volume
V is pV(2aq + 6as, —6ag — 2az, 0). Hence show that this force vanishes if the flow is
irrotational (i.e. if w =V A u = 0 everywhere.)

Show that for a volume V with a stationary rigid boundary, an alternative form for the
rate of energy dissipation @ is
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where w = |w|. What happens if the vorticity w = 0 throughout V'?

If we want to work in non-Cartesian coordinate systems then we can use (0.5) and (0.6)
from the printed sheet to rewrite the u- Vu and VZu terms in the new coordinates. For
Cylindrical Polar Coordinates (r, 0, z), for example, the scale factors (recall M2M1
and M3A2) are h, =1, hg = r, h, = 1. Writing u = (u,, ug, u), show that
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Specialising to axi-symmetry, so that Ju/d0 = 0, derive the Navier-Stokes equations in
these coordinates in the form
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where the terms in square brackets are absent in axisymmetry, but are given here for
completeness. Here
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