3. Low Reynolds number: Stokes flows

The Reynolds number

When the nonlinear advection term u - Vu = 0, we can often solve the
equations. Sometimes, though u - Vu # 0, it may nevertheless be small
compared to the viscous term vV?u.

To quantify the relative sizes of the inertial and viscous terms, we intro-
duce the idea of scales of variation. Let Uy be a typical value of |u|, and let
L be a typical length scale on which u is varying. Then we estimate
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which we call the Reynolds number of the flow. It is clear there is some
flexibility about the choice of Uy and L and hence the precise definition of R..
But if the Reynolds number is high (R, >> 1) viscous forces may be negligible,
as in M3A2, whereas at low Reynolds number (R, < 1) the nonlinear inertial
forces may be ignored. This is the limit to be considered in this chapter.

The Stokes equations

In this case R. < 1 and we neglect inertial terms in the Navier-Stokes equa-
tions (1.20) to obtain

pVu=Vp—F V-u=0. (3.2)
These are the (forced) Stokes equations. Natural boundary conditions are
that at each point of S either u or the traction o;;n; is given. Equation (3.2)
is equivalent to
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Instantaneity

There are no time derivatives in (3.2). Thus u responds instantaneously to

the boundary motion and the force F. For instance, a sphere falling in an
unbounded fluid achieves its terminal velocity at once.



Linearity

There is no u - Vu term in (3.2); therefore u, p and o;; are linearly forced
by any boundary motion or body force. If for instance we have a falling
sphere, doubling the velocity will double o;; and thus double the drag. More
generally, force o velocity rather than acceleration.

Consider the drag force —F acting on a solid body moving with velocity
U = (U4, Uy, Us). Because of the linearity of the problem, we can say F =
F, + F; + F3 where F; is the force when the body moves with velocity
(U, 0, 0) and similarly for Fy and F3. Now let the body be a cube aligned
with the coordinate axes. By symmetry, F; = (al, 0, 0) for some constant
a. Similarly, Fy = (0, al/z, 0) for the same constant « and hence in general
F = oU. Surprisingly, the Stokes drag force for a cube is the same regardless
of its orientation. The same is not true at higher Reynolds numbers.

Reversibility

If the velocity on the boundary of a Stokes flow is reversed then so is the
velocity everywhere in the fluid. If a prescribed boundary motion is reversed
over time then each material point retraces its history. This will be beauti-
fully illustrated in a video.

Does a sphere falling by a wall migrate towards or away from the wall?
Neither: on reversal of g, u must reverse and so if the sphere were to move
towards the wall under g then it would move away from the wall under —g.

Uniqueness Theorem for Stokes Flows

Theorem: There exists at most one Stokes flow in a volume V for which u
is specified on the boundary.

Proof: Suppose ul and u® are two such flows. Let u* = ul" — u(®,
ol = 0'2(]1) - 0(2) and e = e(l) - 6(2). Then u* = 0 on S while (3.3) gives
that 7 ) and “ — (. Now consider

2,LL/ e e dV = / ”8:1:] o Z dV /Umuln] dS = 0.
Thus since €};ef; > 0 we must have e}; = 0, so that for example duj/dz, = 0.
But since uj = 0 on S we have u} = 0 and hence u* = 0 everywhere.




A more sophisticated argument (including the u-Vu term) proves uniqueness
if R, < 7r\/§, but for large R. there may be more than one solution.

Theorem: Minimum dissipation

Theorem: Suppose u(x) is the unique Stokes flow in V' satisfying u = uo(x)
on S. Let T(x) be another ‘kinematically possible’ flow in V' such that
V-t=0and d=ugon S. Then

2/1/ €€ dV > QILL/ €;j€ij dV, (34)
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with equality only if u = T, i.e. energy dissipation is minimum in Stokes
flow.

Proof: Let u* = u —uand ¢}; = ¢;; — €, so that u* =0 on S and e}; = 0.
Consider

/V (Eijgij — 62']‘62']‘) dV = — A 6;}- (Eij + 62']‘) dV = /‘/ 6;}6;} dV — 2/‘/ 6;}-62']‘ dV

The first term is clearly positive; we now show the last term is zero.
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As an example of this theorem, we consider the drag F on a rigid particle
of arbitrary shape moving with velocity U in unbounded fluid. The rate of
working of this force is

U,F; = / U045 dS = 2,LL/ €;j€ij dV < 2,LL/ €;€;j dV
S 14 14

where €;; is the strain rate for any kinematically admissable flow field. If we
choose W = U inside a region V enclosing the body and U to be a Stokes flow
outside V| then €; = 0 inside V, while the RHS is the rate of working of the
drag of a solid body occupying V. It follows that the drag in Stokes flow on
any body is less than the drag of any larger body.

The biharmonic equation

Taking the divergence of the Stokes equations (3.2) (with F = 0) we see that
p is harmonic, VZp = 0. Taking the curl we see similarly that the vorticity
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vector is harmonic, V2w = 0.
Vip=0 and V’e=0 (3.5)
For a planar flow u =V x (0,0,%(z, y)) and w = (0,0, —V2¢). Thus
VA(V*) = Vi =0 (3.6)

so that 1 satisfies the biharmonic equation. We can first solve Viw = 0
and then V%) = —w.
A similar result holds in axisymnmetry. If R is the distance from the axis
of symmetry, the Stokes steamfunction v is found to obey the equation
Vi

D*(D*)) =0 where D*¥ = RV - (ﬁ) . (3.7)

Stokes flow due to a translating sphere

We consider the inertialess flow generated by a sphere of radius a and velocity
u immersed in unbounded fluid of viscosity g which is at rest at infinity. In
particular we want to calculate the force F exerted by the sphere on the fluid.

The linearity of the Stokes equations requires that /' is proportional to
both U/ and p. Dimensional arguments therefore give F' = apall, where o
is a positive dimensionless constant. The isotropy of the sphere’s shape then
implies that F = apalU. We must do some work to find the constant a.

We take spherical polars (r, 8, ¢) with § = 0 parallel to u. The flow is then
axisymmetric with no ¢ dependence and so admits a Stokes streamfunction
(r,0) such that the components of u are (see (1.8))

__L % ___1 %
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It follows from the Stokes equations that D? (D?*i) = 0 as in (3.7), where
9* sinf 0 1 0
D= —— — — . .
or? + rz 00 (sin& @9) (3:8)
The no-slip condition on the sphere surface u = (U cos , —U sin 8, 0) gives
1
Y = -Uda’sin*0 and a—%Z):UasinZ& on r = a.
2 ar
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Finally, for r — oo, ¢ = o(r?). We look for a solution ¢» = f(r)sin® so that

2 2F
"——J; and F'—— =0
r

2

Q= —D*) = F(r)sin*0 where F(r) =

r

as D*Q = 0. Solving for F' and f we have
D
f:Ar4—|—Br2—|—C'r—|——
r
and the boundary conditions
fla) = %UCLQ, fl(a)=Ua, f"—0asr— oo
give A=B=0,C= %Ua and D = —an?’. Substituting back we obtain

2
= Ua’ <3—T — E) sin? 6 and 0 =230%¢in?9 (3.9)
4 a r 20y
and C D C D
U, =2 <— + —) cos and wy= (—— + —) sin 6. (3.10)
r s r s

We can also obtain the pressure (to within an arbitrary constant, p.,) from

—p 0 p 09 0)
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so that
2C p cos 6

2

—py, = 3.11
p—p . (3.11)

The stress can now be determined from (3.2) although care must be taken in
evaluating e;; in this curvilinear co-ordinate system. The normal n is in the
(—r)-direction, and the traction components in the r and 6-directions are

B ou, B 1 du, J [ug
e = P20 or ' Ure_'u(r a0 +8r<r>) ' (3:.12)

By symmetry, the net force exerted by the sphere on the fluid must point in
the z-direction, so that

|F| = — / (0rr cos @ — o,gsin ) dS.
S
Finally, we obtain the force on the fluid as
F = 6mpau, (3.13)

a result known as Stokes’ law.



The flow at infinity; Stokeslets

Note the fore and aft symmetry in the streamline pattern at low R.. The
velocity decays slowly as r — oo, u ~ %, so that far field effects are important
and distant boundaries and other particles may affect the flow.

We can calculate F more easily by moving the integral to a sphere at
infinity using the divergence theorem;

FZ' = / TN dS = —/ O'Z']‘n]‘,ds.
r=a Seo

2 -1

Only terms of order =2 in o;; (r~" in u or r in ¢) therefore contribute to
the force. In the far field 1) ~ C'rsin?# and p — po, ~ 2uC cos@r=2. Thus for
general shapes of particle in unbounded fluid exerting a force F on the fluid,
at large distances

Fr
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(2cosf, —sin 6, 0) (3.14)

This solution for u and p satisfies the Stokes equations everywhere except
at r = 0 and corresponds to a point force F acting at r = 0. It is called a
Stokeslet velocity field.

Sedimentation and the rise of bubbles

A spherical particle of radius @ and density p, feels a gravitational force
%ﬂqS(pp — p)g. This must balance the Stokes drag, so that we deduce that
its sedimentation velocity is

2 a’
=5
If instead of a solid sphere we have a gas bubble, the solution is slightly

u (ps — ) 8. (3.15)

different. We must assume that surface tension is strong enough to keep
the shape spherical, but the appropriate boundary condition is now e,y = 0
rather than ug = 0. This leads to a solution

Y = LUsar sin?f . (3.16)

As the coefficient of rsin?# is % of the value in the solid sphere case (3.9),
we deduce that the drag on the bubble is —4mauU. A small spherical gas
bubble rises with speed %pgaQ/,u, (although for air in water the radius must
be tiny for the Reynolds number to be low.)



