M3A10: §1.2 Dynamics and the stress tensor

The forces that act on a fluid element are of two kinds:

- (i) Volume or body forces, having long range, that are proportional to the *volume* of a fluid element (e.g. gravity).
- (ii) Surface tractions, having short range, that are proportional to the surface area of a fluid element. Let $\mathbf{n} dS$ be an arbitrary element of area drawn in the fluid at (\mathbf{x}, t) . We write the force exerted by the fluid on the +side of dS on the fluid on the -side as $\boldsymbol{\tau} dS$. $\boldsymbol{\tau}$ is called the surface traction and depends not only on \mathbf{x} and t, but also upon \mathbf{n} . We define the Cauchy stress tensor $\sigma_{ij}(\mathbf{x}, t)$ such that σ_{i1} is the force acting on a small surface element whose normal points in the 1-direction, and similarly for σ_{i2} and σ_{i3} .

Theorem 1: Tractions and Stress

We claim that for a general surface element with normal n,

$$\tau_i = \sigma_{ij} n_i$$
.

Proof. Let V(t) be an arbitrary material volume of fluid having surface S(t). The momentum of the fluid in V(t) is then

$$\int_{V(t)} \rho \, \mathbf{u} \, dV.$$

Thus the equation of motion for the fluid in V(t) is

$$\frac{d}{dt} \int_{V(t)} \rho \,\mathbf{u} \,dV = \int_{V(t)} \mathbf{F} \,dV + \int_{S(t)} \boldsymbol{\tau} \,dS . \qquad (1.12)$$

Now suppose that V is small, having linear dimension ε . Then because volume integrals have size $O(\varepsilon^3)$, whereas surface integrals are $O(\varepsilon^2)$, then in the limit $\varepsilon \to 0$ the surface terms in equation (1.12) must balance at leading order, and so

$$\lim_{\varepsilon \to 0} \int_{S(t)} \boldsymbol{\tau} \ dS = 0.$$

Now take V to be instantaneously a small tetrahedron as sketched, with a sloping face having area dS and normal \mathbf{n} . The other faces have areas

$$n_1 dS$$
, $n_2 dS$, $n_3 dS$

Because the surface forces on this tetrahedron must balance,

$$\tau_i dS + \sigma_{i1}(-n_1)dS + \sigma_{i2}(-n_2)dS + \sigma_{i3}(-n_3)dS = 0.$$

Hence, as required,

$$\tau_i = \sigma_{ij} n_j \ . \tag{1.13}$$

Theorem 2: Symmetry of the stress tensor

Provided no 'body couples' act on the fluid,

$$\sigma_{ij} = \sigma_{ji}. \tag{1.14}$$

Proof. Taking the origin to lie instantaneously within V(t), the angular momentum of fluid in V is

$$\int_{V(t)} \rho \, \mathbf{x} \wedge \mathbf{u} \, dV,$$

and this has magnitude $O(\varepsilon^4)$. Now conservation of angular momentum implies that (in the absence of any 'body couples' e.g. a ferrofluid in a magnetic field)

$$\frac{d}{dt} \int_{V(t)} \rho \, \mathbf{x} \wedge \mathbf{u} \, dV = \int_{V(t)} \mathbf{x} \wedge \mathbf{F} \, dV + \int_{S(t)} \mathbf{x} \wedge \boldsymbol{\tau} \, dS \,. \tag{1.15}$$

The last term here has magnitude $O(\varepsilon^3)$, and is therefore larger than the other two terms. Thus at leading order it must vanish, i.e.

$$\lim_{\varepsilon \to 0} \int_{S(t)} \mathbf{x} \wedge \boldsymbol{\tau} dS = 0.$$

Using theorem 1, the i^{th} component of this equation may be written

$$\int_{S} \varepsilon_{ijk} x_{j} \sigma_{km} n_{m} dS = \int_{V} \varepsilon_{ijk} \frac{\partial}{\partial x_{m}} (x_{j} \sigma_{km}) dV$$
$$= \int_{V} \varepsilon_{ijk} x_{j} \frac{\partial \sigma_{km}}{\partial x_{m}} dV + \int_{V} \varepsilon_{ijk} \sigma_{kj} dV.$$

The integrals here have magnitude $O(\varepsilon^4)$, and $O(\varepsilon^3)$ respectively, so, in the limit $\varepsilon \to 0$,

$$\varepsilon_{ijk}\sigma_{kj} = 0 \implies \varepsilon_{ilm}\varepsilon_{ijk}\sigma_{kj} = 0 \implies \sigma_{ml} - \sigma_{lm} = 0$$

and thus the stress tensor is symmetric. Alternatively, we can balance the moments of the surface tractions on a cube of side ε , as in lectures.

Equation of motion for a Newtonian fluid

Assuming the fluid is **homogeneous and at rest**, it can have no preferred direction. Now a general stress tensor, σ_{ij} will in general have three eigenvectors, or special directions. It follows that when the fluid is at rest, the stress tensor can be written

$$\sigma_{ij} = -p\delta_{ij}$$
 where we shall call $p(\mathbf{x}, t)$ the pressure.

When motion does occur, we shall write

$$\sigma_{ij} = -p\delta_{ij} + \sigma'_{ij}$$
 where $p = -\frac{1}{3}\sigma_{ii}$. (1.16)

 σ'_{ij} is called the **deviatoric stress**. In the **inviscid fluid mechanics** course M3A2, it is assumed that $\sigma'_{ij} \equiv 0$. More generally, we will assume a linear relationship. between the deviatoric stress σ'_{ij} and the velocity gradient tensor $\partial u_i/\partial x_j$. This assumption, which is like Hooke's Law for springs, is what defines a **Newtonian fluid**. The linearity relation between the two second-order tensors takes the form

$$\sigma'_{ij} = A_{ijkl} \frac{\partial u_k}{\partial x_l} \,, \tag{1.17}$$

where A_{ijkl} is a 4th order tensor, which at first glance contains 81 unknown constant coefficients! However, remember that the fluid is **isotropic** and has no preferred direction. This means that the tensor A_{ijkl} must be **invariant** with respect to rotations of the coordinate axes. It turns out (see, for example, 'Cartesian Tensors' by Jeffreys) that this requires

$$A_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu \delta_{ik} \delta_{jl} + \mu' \delta_{il} \delta_{jk}$$

and so

$$\sigma'_{ij} = \lambda \delta_{ij} \frac{\partial u_k}{\partial x_k} + \mu \frac{\partial u_i}{\partial x_i} + \mu' \frac{\partial u_j}{\partial x_i} .$$

where λ , μ and μ' are unknown constants. Furthermore, two of these can be eliminated. Firstly, as we are dealing with incompressible fluids, $\nabla \cdot \mathbf{u} = 0$ and λ is irrelevant. Secondly, we showed above that $\sigma_{ij} = \sigma_{ji}$. This means that $\mu' = \mu$. We deduce that the stress tensor σ_{ij} for a Newtonian fluid is

$$\sigma_{ij} = -p\delta_{ij} + 2\mu e_{ij}$$
 where $e_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$. (1.18)

The constant μ is known as the **viscosity** of the fluid.

The momentum equation for a viscous fluid

With the expression (1.13) for the surface traction τ , the equation of motion (1.12) for V(t) becomes

$$\frac{d}{dt} \int_{V(t)} \rho \, u_i \, dV = \int_{V(t)} F_i \, dV + \int_{S(t)} \sigma_{ij} n_j \, dS.$$

Using Reynolds' transport theorem (1.3), mass conservation (1.4) and the divergence theorem (0.8) then gives

$$\int_{V(t)} \rho \, \frac{Du_i}{Dt} \, dV = \int_{V(t)} F_i \, dV + \int_{V(t)} \frac{\partial \sigma_{ij}}{\partial x_j} \, dV.$$

and because V is arbitrary,

$$\rho \, \frac{Du_i}{Dt} = F_i + \frac{\partial \sigma_{ij}}{\partial x_i} \,. \tag{1.19}$$

This is the Cauchy momentum equation for the fluid, and holds for any stress tensor. Now for the Newtonian stress relation (1.18), we have

$$\frac{\partial \sigma_{ij}}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \mu \frac{\partial^2 u_i}{\partial x_j \partial x_j} + \mu \frac{\partial}{\partial x_i} \frac{\partial u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \mu \nabla^2 u_i$$

and so, from (1.19), the momentum equation for a Newtonian Fluid is

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \mathbf{F} + \mu \nabla^2 \mathbf{u} .$$

We can now, finally, write down the **Navier-Stokes equations**, which we will solve for the remainder of this course. For constant density ρ and viscosity μ , and external force **F**, we have

The Navier-Stokes Equations for an incompressible fluid

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla p + \mathbf{F} + \mu \nabla^2 \mathbf{u} . \tag{1.20}$$

$$\nabla \cdot \mathbf{u} = 0 \ . \tag{1.21}$$

When $\mu = 0$ we obtain the **Euler equations**, which are the basis of M3A2. Note, however, that as $\mu \to 0$, the fluid does not necessarily behave in the same way as it would if $\mu = 0$.