M3A10: §1.2 Dynamics and the stress tensor

The forces that act on a fluid element are of two kinds:

(i) Volume or body forces, having long range, that are proportional to
the volume of a fluid element (e.g. gravity).

(ii) Surface tractions, having short range, that are proportional to the
surface area of a fluid element. Let ndS be an arbitrary element of area
drawn in the fluid at (x, t). We write the force exerted by the
fluid on the +side of dS on the fluid on the —side as 7dS. T
is called the surface traction and depends not only on x and ¢,
but also upon n. We define the Cauchy stress tensor o;;(x, t)
such that o;; 1s the force acting on a small surface element
whose normal points in the 1-direction, and similarly for o;; and o;s.

Theorem 1: Tractions and Stress

We claim that for a general surface element with normal n,

Ty = Oy .

Proof. Let V(t) be an arbitrary material volume
of fluid having surface S(¢). The momentum of the
fluid in V() is then

dv.
/V(t) Py

Thus the equation of motion for the fluid in V(?) is

d
< dV = / FdV / ds . 1.12
dt /V(t) Py V(t) + 5(t) T ( )

Now suppose that V' is small, having linear dimension ¢. Then because
volume integrals have size O(¢?), whereas surface integrals are O(¢?), then in
the limit ¢ — 0 the surface terms in equation (1.12) must balance at leading
order, and so

lim T dS =0.

e—=0 S(t)
Now take V' to be instantaneously a small
tetrahedron as sketched, with a sloping face
having area d5 and normal n. The other faces have areas

nldS, TLQdS, ngdS
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Because the surface forces on this tetrahedron must balance,
7,dS + 0i1(—n1)dS 4 0i9(—n2)dS + 0;3(—ns3)dS = 0.

Hence, as required,

Ty = Oy . (113)

Theorem 2: Symmetry of the stress tensor

Provided no ‘body couples’ act on the fluid,
O35 = 0. (114)

Proof. Taking the origin to lie instantaneously within V/(¢), the angular
momentum of fluid in V' is

/ px AudV,
V(1)

and this has magnitude O(e*). Now conservation of angular momentum
implies that (in the absence of any ‘body couples’ e.g. a ferrofluid in a
magnetic field)

d
< AudV :/ AFdV / AT dS 1.15
dt /V(t)px " V(t)X + S(t)X T ( )

The last term here has magnitude O(e?), and is therefore larger than the
other two terms. Thus at leading order it must vanish, i.e.

lim XA TdS =0.
e—0 S(t)

Using theorem 1, the i'* component of this equation may be written

0
/Sgijkxjo-kmnm dS = /‘/ EijkaT(:L‘jO'km) dV

m

aUkm
= ailsz;'—dV—l—/gilald\/.
/V gk oz, v 7kCkj
The integrals here have magnitude O(¢c*), and O(e?) respectively, so, in the
limit e — 0,
ciikok; =0 =  umeipor; =0 =  0p— 04, =0

and thus the stress tensor is symmetric. Alternatively, we can balance the
moments of the surface tractions on a cube of side ¢, as in lectures.



Equation of motion for a Newtonian fluid

Assuming the fluid is homogeneous and at rest, it can have no preferred
direction. Now a general stress tensor, o;; will in general have three eigen-
vectors, or special directions. It follows that when the fluid is at rest, the
stress tensor can be written

oij = —pd;; where we shall call p(x, t) the pressure.

When motion does occur, we shall write

—lO'“' . (116)

oi; = —pdi; + 02’»]- where p= —3
o}, is called the deviatoric stress. In the inviscid fluid mechanics course
M3A2, it is assumed that o;; = 0. More generally, we will assume a linear
relationship. between the deviatoric stress of; and the velocity gradient ten-
sor Ju;/0x;. This assumption, which is like Hooke’s Law for springs, is what
defines a Newtonian fluid. The linearity relation between the two second-
order tensors takes the form
auk

o = Aijr g
where A;;i; is a 4th order tensor, which at first glance contains 81 unknown
constant coefficients! However, remember that the fluid is isotropic and has
no preferred direction. This means that the tensor A;;;; must be invari-
ant with respect to rotations of the coordinate axes. It turns out (see, for

(1.17)

example, ‘Cartesian Tensors’ by Jeffreys) that this requires
Aiit = Xijom + pdindin + ,u/5iz5jk

and so

ou Ou Ou,

Oz Oz ox;

where A, u and y' are unknown constants. Furthermore, two of these can be
eliminated. Firstly, as we are dealing with incompressible fluids, V-u = 0
and A is irrelevant. Secondly, we showed above that o;; = 0. This means

ol = \6y;

i S by
k J

that ¢ = p. We deduce that the stress tensor o;; for a Newtonian fluid is

Ou;  Ou;
oy = —pdij + 2pei; where ¢;; = % (6Z + 81;]) ) (1.18)
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The constant p is known as the viscosity of the fluid.



The momentum equation for a viscous fluid

With the expression (1.13) for the surface traction 7, the equation of motion

(1.12) for V(1) becomes

d
- idV:/ F,dV / i dS.
di /V(t)pu V() + S(t)o-]n]

Using Reynolds’ transport theorem (1.3), mass conservation (1.4) and the
divergence theorem (0.8) then gives

Du; do;;
ZdV:/ Fid / 9% gy,
/V(t)p Dt V() Vit V() Ox;

and because V' is arbitrary,

Du; Jo;s
L= 4 2
P Dt —I_ al'j

(1.19)

This is the Cauchy momentum equation for the fluid, and holds for any stress
tensor. Now for the Newtonian stress relation (1.18), we have

0o B dp 0%u; 0 Ou; dp

= — — = Viu;
83(7]‘ 8”(72 —I_lual']‘al'j —I—Iuafl?i a.r]' 81:2 ‘|‘,M “

and so, from (1.19), the momentum equation for a Newtonian Fluid is

Du

" Di

We can now, finally, write down the Navier-Stokes equations, which
we will solve for the remainder of this course. For constant density p and

= -Vp+F+puViu.

viscosity p, and external force F, we have

The Navier-Stokes Equations for an incompressible fluid

p (2—1; + (u- V)u) = —Vp+F+puViu. (1.20)

Vou=0. (1.21)

When ¢ = 0 we obtain the Euler equations, which are the basis of
M3A2. Note, however, that as ¢ — 0, the fluid does not necessarily behave
in the same way as it would if p = 0.



