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Outline
This project looks at solving the Convection Equa-
tions in an annulus. If a surface is heated, the heat
diffuses throughout the fluid causing the fluid to ex-
pand, become more buoyant and rise up. Cooler
fluid then moves to replace it and the whole cy-
cle continues with the fluid being advected around.
This is called natural convection which is driven by
gravity and occurs in the center of the Earth and
other celestial bodies.
We can model the convection between two spheres
in two-dimensions by instead looking at the convec-
tion between two circles. This 2-D annular model
should capture the key features of the solution.
To solve these equations numerically, Finite Differ-
ence Methods will be used where approximations are
made on a grid of points.

The Problem
The governing non-dimensional equations to solve
for the temperature T , pressure p and the velocity
u = (u, v, 0) are

Tt + u · ∇T = ∇2T

ut + u · ∇u = Pr(−∇p−RaT ĝ +∇2u)

∇ · u = 0

in 1 < r < b with T |r=1 = 1, T |r=b = 0

where

• ĝ is the direction of gravity here acting in the
−r̂ direction towards the centre

• Pr is the Prandtl number representing the ra-
tio of the fluid kinematic viscosity to the ther-
mal diffusivity

• Ra is the Rayleigh number measuring the
thermal driving force.

We can simplify these equations and eliminate the
pressure by taking the curl of the second equation.
Instead we now need to solve

ωt + u · ∇ω = −PrRa
Tθ
r

+ Pr∇2ω

−ω = ∇2ψ

where the vorticity ω is defined by∇×u = (0, 0, ω)
and the stream function ψ by u = (ψθ/r,−ψr, 0).

The Method
Using the operator splitting approach we can treat
the two processes in the equations separately, first
advecting then diffusing.

Advection
We want to advect a quantity Q by Qt +u · ∇Q = 0.
This can be rewritten as Qt + ∇ · (uQ) = 0 (since
∇·u = 0) where uQ is the flux. In polar coordinates
this is
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∂

∂θ
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and if we let F = ruQ and G = vQ, the equation
now becomes rQt + Fr +Gθ = 0.
An equation of this form is a conservation law so we
would like to use a conservative scheme. One such
scheme is Lax-Wendroff and in particular the two-
step Richtmyer method. Richtmyer is second order
in space and time and conservesQ. It involves find-
ing Q at half grid points at half time levels and then
using the results to find Q at the actual grid points
at integer time levels.

Diffusion
Now we would like to diffuse Q by Qt = κ∇2Q+F
where F is a forcing term. It would be best to use
an implicit scheme because stable schemes can be
produced with larger time steps. Crank-Nicolson
has been used here which gives
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where ∆2 is the finite difference approximation to
the polar Laplacian. An iterative scheme such as
Gauss-Seidel can be used to find Qj+1

m,n from this
equation. To improve the speed of the code, a Multi-
grid method can be used to switch between coarse
and fine grids.

Natural Convection
There are two different types of solution to the problem - a conductive solution where u = 0 and T = T (r)
and a solution where we get convection. Whether we get conduction or what type of convection we get
depends on the parameters - the Prandtl and Rayleigh numbers and the size of the annulus. Using 128×256
points on the (r, θ) grid, we can set up the problem by setting the Dirichlet condition on the temperature
T |r=1 = 1, T |r=b = 0 and the initial condition to be zero everywhere else.

In a horizontal plane, a type of natural convection we get if a plate is heated from below (such as heating
water in a pan) is Rayleigh-Bénard convection. The number of cells of convection that form depends on
the size of the domain. To see if we get something similar in an annular geometry, the annulus size will
be set to fractions of the circumference of the inner circle. The equilibrium solutions reached for Pr = 0.5,
Ra = 10, 000 and an annulus size of π/2, π/3 and π/4 are:

We can clearly see the cells of convection that have been formed. As the annulus size decreases we get more
rolls of convection, this is because as b→ 1 we approach Rayleigh-Bénard convection in an infinite layer.

Prandtl and Rayleigh Numbers
The convection we observe in the model is
caused by small differences and errors made
at machine level. These instabilities can take
a long time to manifest depending on the pa-
rameters. For each Prandtl number, we have a
critical Rayleigh number Rc where if we have
Ra < Rc we get conduction and if Ra > Rc
these instabilities are amplified and convec-
tion develops.

In this specific case for Pr = 0.5 we find
Rc ≈ 1000. If Pr is small, diffusion domi-
nates and so we need a larger Rayleigh num-
ber to drive the fluid to develop convection.
Also, as we increase Ra, the shape of rolls
gets sharper and more defined. Now setting
Ra = 2000 - above the critical value we can
now experiment with the Prandtl number. As
Pr increases, less diffusion needs to occur be-
fore convection develops. For any chosen Pr
andRa, the number of cells varies between 2-4
for the case where b = π/2+1 and it is possible
to have rolls which are not equal in size.

Conclusion
For a given annulus size we can find the aver-
age number of rolls that develops by experiment-
ing with the parameters. However, it is not en-
tirely clear how this number varies as we change
Pr and Ra and this is because these two numbers
are linked. Given any fluid, if we know the Prandtl
and Rayleigh numbers we should be able to use this
model to find the solution.


