M345N10 First Project – A spinning cylinder in a magnetic field

This project counts for 20% of the entire module. It is due in by 23:59 on Monday 5th February. It should be submitted electronically on Blackboard – instructions will follow.

The magnetic field lines in a plane are contours of the function $\psi(r, \theta, t)$ where (r, θ) are polar coordinates and t is time. We consider the circular region 0 < r < 2, which contains conducting fluid which rotates with angular velocity $\omega(r)$, where

$$\omega = \begin{cases} 1 & \text{for } r \leq 1\\ 0 & \text{for } 2 > r > 1. \end{cases}$$
(1)

It can be shown that ψ can be written

$$\psi(r,\,\theta,t) = a(r,\,t)\cos\theta - b(r,\,t)\sin\theta \tag{2}$$

where a and b satisfy the linked diffusion equations for a constant parameter η

$$a_t - \omega b = \eta \left[a_{rr} + \frac{a_r}{r} - \frac{a}{r^2} \right]$$

$$b_t + \omega a = \eta \left[b_{rr} + \frac{b_r}{r} - \frac{b}{r^2} \right].$$
(3)

At time t = 0, the field lines are parallel with $\psi = r \cos \theta$. Your task is to determine a and b as time increases. You may assume that ψ does not vary in time at r = 0 and on r = 2.

(1) Write an explicit code to solve this problem, using centred differences in r on a uniform grid with steplengths (h, k) in (r, t). [You may modify *advdiff.m*, if you wish.]

(2) Discuss the theoretical limitations on k and h for your scheme to work, and illustrate what happens when it begins to fail. In what follows, use values of k which give accurate results

(3) Run your code for the values $\eta = 0.16, 0.04 \& 0.01$ and others if you choose, with a steplength $h \leq 0.1$. Display contours of ψ at times $t = 3, 6, 9, \infty$ where " ∞ " means a large enough value that nothing seems to be changing. Also plot a(t) and b(t) for two r-values, one bigger and one less than 1.

(4) Discuss your results. Describe what happens qualitatively, and estimate how the times necessary for things to occur vary with η . If you have time, investigate what happens for other functions $\omega(r)$, for example $\omega = r$ for $r \leq 1$, $\omega = 0$ for r > 1.

Practical hints: When trying to work out what is going on, it may help to plot the solution every timestep or 2 on the same figure, using the Matlab *pause* command to create a simple animation. Matlab has advice on contouring on polar coordinates, and the routine polarFeb14 I supplied may be of use. If your solution varies on small lengthscales, you may need to reduce h to ensure you resolve the action adequately. And always your k must be small enough to ensure stability.