
M4A33: Flow in curved pipes: the Dean equations

Consider flow down a slowly curved pipe. In terms of cylindrical polar coordinates
(r, φ, z) we shall model this as a portion of a torus, (r − b)2 + z2 = a2 where b � a, and
seek solutions independent of φ, driven by a pressure gradient in the φ-direction.

The velocity u = (ur, uφ, uz) satisfies the Navier Stokes equations
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where the material derivative D/Dt = ∂/∂t+ ur∂/∂r + uz∂/∂z. Here G is the downpipe
pressure gradient, G = −1/r ∂p/∂φ. We shall seek steady solutions to these equations.
Let us first see if there is a unidirectional solution, as for the straight pipe. If we substitute
ur = 0 = uz, we find
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So such a solution is only possible if uφ is constant on cylinders. Such a flow would be
consistent with a no-slip condition only for flows between concentric cylinders. Any curved
pipe-flow cannot be unidirectional.

However, if the pipe is almost straight, we might expect the flow to be almost unidi-
rectional. Now r and z vary over the scale a and we assume
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We scale z = az∗ and let U0 be a typical scale of uφ. Then we expect a suitable scale for
the pressure to be p ∼ ρU2
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and neglecting terms of order (a/b), equations (1) become
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We choose the scale U0 and define a parameter K such that

Ga2

µU0
= 1 and K =

ρU0a

µ

(a
b

)1
2
. (7)

From now on we drop the ∗ from all the dimensionless variables to obtain the Dean
equations.
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These equations are essentially the two-dimensional Navier-Stokes equations with a body
force u2

φ acting towards the inside of the bend. If we write u = (u, v, w) in Cartesian
coordinates (x, y, z), and introduce a stream function, ψ(x, z) where u ≡ ux = ∂ψ/∂z
and w ≡ uz = −∂ψ/∂x, and v(x, z) ≡ uφ, then (8) reduce to
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where Ω = −∇2ψ is the downpipe vorticity and suffices now denote partial derivatives.
These equations are to be solved for v(x, z) and ψ(x, z) subject to the no-slip conditions

∇ψ = 0, v = 0 on the pipe boundary. (10)

There is one parameter in the problem, K, which is known as the Dean number and defined
in (7). It is a Reynolds number modified by the pipe curvature, (a/b).
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