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Consider thin layer surfactant driven fluid flow along a horizontal impene-
trable substrate. You are given that a lubrication-like approximation leads
to the governing equations

pzzov Pz = Uzz, um+wz:O/

[y + (usl), = Tyup/Pe

in |z|] < 00, 0 < z < h(x,t). The fluid pressure is p and the horizontal and
vertical fluid velocities are u and w respectively. The surfactant concentration
is I'(x,t) and us is the horizontal velocity at the surface, with Pe as the
constant Peclet number. The boundary conditions are

ht"’Uhx:w: p:07 sz:uzzaz:_rx

on z = h(z,t) and
u=w=0
on z = 0. The surface tension o is related to the surfactant concentration via

a linear equation of state o(I') = 1 — I'. Show that the evolution equations
for I'(x,t) and h(z,t) are

Oh o (War\_ o or o (L or\ 1T

ot ox\20x) 7 Ot Oz Or)  Peda?’

If we assume that the Peclet number, Pe, is > 1 and the quantity of sur-
factant placed upon the film surface is proportional to t* (¢ is time) use
similarity variables

£=a/t", h(z,t) = H(E), D(z,t) = GE)/t"
to show that the long-time position of the surfactant front, X,,.., advances

such that
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Consider the interface, x = s(t), between a fluid in x < s(t) and a solid in
x > s(t), if the solid is melting and Latent heat, L, per unit mass is supplied,
show that the interface boundary condition is:
8T1 8T2 ds
—Ki—+ Ko— = Lp—.
" ox * Oz Pat
The variables with subscripts 1, 2 are in the fluid and solid respectively. Both
materials have density p, the heat conductivities are /K 5. The temperatures
in the fluid and solid are T} and T3 respectively. Now consider the problem
of melting a half space where

o, T,

ﬁ—/ﬁlw, 0<:L’<8(t)
oMy L
o~ Mgpr S s

with boundary conditions 77 = ©; at x = 0 and T, = ©5 as * — oco. On
x = s(t) the interface boundary condition
8T1 8T2 ds
Y St NI Ot Y P
o L oz Pat
holds together with 77 = 75 = 0 on « = s(¢).  Show that the solution is
given by

2 Iilt) 2

T1:@1+Aerf< ’ 1) for 0 < x < s(t)

T, = —O, + Berfc ( 1) for s(t) < z < o0.

2(Rot)?

A and B are constants to be determined. Show that s(t) = at? where a is a
constant that is given by the root of the transcendental relation

K1@167a2/4/<1 K262€_a2/4ﬁ2 pLO[
N N :
(mry)Zerf (a/2/£12> (ko) Zerfe (a/me) 2
You can use the definitions

2 7 e 1
erf(z) = ﬁ/o e dr, erfe(z) = 1 — erf(z2).

Turn over...
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Write an essay on any topic covered in the course but not examined on this
paper. Discuss, as appropriate, the industrial significance of the problem,
the assumptions of the model and the solution.

N.B. The following formulae may be of use in questions 4 and 5. In terms of
spherical polar coordinates (r, 6, ), an axisymmetric scalar function u(r, )
and vector F(r,0) = (F,, Iy, F),) satisfy

ou 10u
Vu = (E, ;@, 0)

10, 1 9.
V- (F, Fy, F,)) = i (7’ Fr> + 090 (sin@Fy) .
|1 9 ; 10 10(rFy) 10F,
V/\ (FT7 Fg, Fn) == lm%(FnSlne), _;E(FHT% ; ar — ; 89

Laplace’s equation VZu = 0 has the solution

> B
u="> (Anr” + Tn—:l) P,(cos0) ,
n=0

where the Legendre function y = P,(cos f) satisfies

1 0 (. 0y _
T (mnG%) +n(n+1)y=0.
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A spherical drop of electrically conducting fluid occupies 0 < r < a in terms
of spherical polar coordinates (r, 0, n). Its surface is perturbed to the position
¢ = a, where ( =1 — adP,(cosf). Here P, is a Legendre function of integer
order n, while § is constant in space with 0 < § < 1.

Show that the curvature K = V - n, where 1 is the unit normal parallel to
V(, is given by
K==-—-P,2—n(n+1)]+0(5) .
a a
The drop is known to carry an electric charge @), and its surface is at constant
electric potential. Find the perturbed electric potential ¢ outside the drop.

Evaluate the normal outward electric stress 7 = 1g¢(1- V¢)? and show that

Q2

= )
T=Tot 16m2eqat

(n —1)P,(cos ) + O(8?) ,

where 7y is constant. Deduce the value of pg, the fluid pressure perturba-
tion on the drop surface, in terms of the surface tension v and the other
parameters.

Given that the hydrodynamics require that if p, = 0 AP, then for stability
A > 0, deduce that for the spherical drop to be stable

Q* < 64m3cya® .

Turn over...
© University of London 2002 M4A33 /Page 5 of 6



In the TIG welding process, a constant electric current I enters a horizontal

pool of liquid metal at the origin. In terms of spherical polar coordinates,

the metal is assumed to occupy the infinite half-space, 0 < 6 < 7. The metal

has kinematic viscosity v and density p. The current spreads out radially
1

in 0 < 0 < 57 with a current density j = (j(r), 0, 0), giving rise to the

azimuthal magnetic field B = (0, 0, B(r,0)).
Find the functions B and j, and show that

I? (1 —cos®
VAGAB) = < COS).

212 \ rdsind

Seek a similarity solution for the resultant motion of the metal given by the
streamfunction ¢ = vr f(0) = vrg(p), where p = cos 6, and

u:V/\<0,0, 7’0 > with w=VAu.
rsin 6
Show that 2
VA(uAw) =" izn (0,0, 2¢'g" + (99")) .

where ’ denotes differentiation with respect to p. Write down the azimuthal
component of the vorticity equation given that

vsin 6

VQQ _ (0, 0, — {4Mg/// . (1 . Mz)g////}> .

and integrate it three times to show that, for arbitrary constants A, C' and
D,

18— (1= p?)g —2pg+ KA+ p)?In(1+p) = Ap® + Cpu+ D

pol?

where K = SICHT

Numerical integration of this last equation with suitable boundary conditions
shows that on the axis § = 0 the velocity is infinite if K is large enough. How
might a real fluid avoid this singularity?
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