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1. Let us consider the melting of ice by hot water. We shall idealize the situation
by considering a semi-infinite region of ice in x > s(t) and have the hot water
in x < s(t), where s(t) is the time-dependent position of the interface between
ice and water.

By considering a small element δx of ice at the interface that melts in a time
δt show that the boundary condition that is imposed at the interface is that
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where L is Latent heat per unit mass required to melt the ice, x = s− lies
just to the left of the interface and x = s+ is to the right. The parameters
k1 and k2 are the conductivities of the water and ice respectively.

Now we consider the simpler situation when k1 = k and k2 = 0. Let us
assume that the water is constantly refreshed at the interface and is at a
constant temperature T = Tm > T0 at the interface. T0 is the constant
temperature of the ice at infinity.

We are required to solve the heat equation

∂T

∂t
= α

∂2T

∂x2

in x > s(t) with boundary conditions

T → T0 as x→∞

and

T = Tm, −k
∂T

∂x
= ρL

ds

dt

on x = s(t). Given that erfc[x/2(αt)1/2] is a solution of the heat equation,

[ The following integral may be useful

erfc(η) =
2
√
π

∫ ∞

η
e−p

2

dp

]

show that the solution that satisfies the boundary conditions is given by

T = T0 +
Tm − T0

erfc(λ)
erfc(x/2(αt)1/2)
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where λ is a constant defined as λ = s(t)/2(αt)1/2. Show that it is determined
from

k

α
√
π

(Tm − T0)

erfc(λ)
e−λ

2

= ρLλ.
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2. Flow is driven in a slightly curved, circular pipe by an oscillating pressure
gradient. In terms of cylindrical polar coordinates (r, θ, z), with z pointing
along the pipe axis, the pipe surface is r = 1 and the velocity is written

u =
(

1
r
ψθ, −ψr, w

)
and the vorticity Ω = −∇2ψ .

For constant K and p, the unsteady Dean equations for this flow are

wt + K
r

(ψθwr − ψrwθ) = cos(2p2t) +∇2w

Ωt + K
r

(ψθΩr − ψrΩθ) = Kw(wr sin θ + 1
r
wθ cos θ) +∇2Ω

Assuming a core/boundary layer structure with p � 1, so that ∇2 ≈ ∂2

∂r2 ,
the equations are rescaled according to

T = p2t, W = wp2, Ψ = p7ψ/K, n = (1− r)p

to obtain in the boundary layer near r = 1

WT + ε(ΨnWθ −ΨθWn) = cos 2T +Wnn

ΨnnT + ε(ΨnΨnnθ −ΨθΨnnn) = WWn sin θ + Ψnnnn

Identify the constant ε which derives from the rescaling. An appropriate set
of boundary conditions are

W = Ψ = Ψn = 0 on n = 0, Ψnn → 0, Wn → 0 as n→∞.

Setting ε = 0, seek a solution with W = <e
[
f(n)e2iT

]
, where <e denotes the

real part, and deduce that

W = 1
2

sin 2T − 1
2

sin(2T − n)e−n .

Defining a time average of a quantity ξ by ξ = 1
π

∫ π
0 ξ dT , show that W 2 has

the average
W 2 = 1

2
|f |2 = 1

8
+ 1

8
e−2n − 1

4
e−n cosn .

Take an average of the Ψ-equation and verify that the solution is

Ψn = 1
64

sin θ(1− e−2n − 4e−n sinn) .

What does this imply about the flow in the core of the pipe? Discuss briefly
the resultant advantages in an industrial or physiological context.
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3. Give an account of any topic covered in the course not explicitly examined
on this paper.

Discuss, as appropriate, the industrial significance of the problem, the as-
sumptions of the model and the solution.
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4. A uniform magnetic field B = B0(cos Ωt, sin Ωt, 0) (in Cartesian coordinates)
rotates slowly about the z-axis. As it passes through a region of fluid with
permeability µ0 and conductivity σ, it generates a current density j and
electric field E according to the equations

j = σE, ∇∧ E = −
∂B

∂t
, ∇∧B = µ0j .

If the fluid region has typical dimension L, find a characteristic scale Ω0 such
that if Ω� Ω0 then the magnetic field is spatially uniform at leading order.

In this case, show that the rate of vorticity generation within the fluid takes
the constant value

∇∧ (j ∧B) = (0, 0, σΩB2
0) .

A vertical column of solidifying liquid metal occupies r < a in terms of cylin-
drical polar coordinates (r, θ, z). Assuming the flow has circular streamlines,
u = (0, uθ(r), 0) (in cylindrical coordinates) the Navier-Stokes equations re-
quire

µ∇2ω +∇∧ (j ∧B) = 0 where ω =

(

0, 0,
1

r

∂(ruθ)

∂r

)

.

Find uθ(r) given that the boundary r = a is solid. Can the fluid rotation
rate exceed Ω?

Without performing any calculation, state roughly what value of Ω gives
maximum stirring when the other parameters are fixed.

[

In cylindrical polars ∇2φ =
1

r

∂

∂r

(

r
∂φ

∂r

)

+
1

r2

∂2φ

∂θ2
+
∂2φ

∂z2
.

]
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Figure 1: Geometry of the flow described in Question 5

5. Consider a multilayer material flowing downslope on a flat plate that is in-
clined at an angle φ to the horizontal. We assume that the flow is driven by
gravity and that surface tension is not important. Let us choose axes such
that x is downslope and z is perpendicular to the plate. The geometry is
shown in the figure.

The multilayer fluid is composed of two immiscible, different Newtonian (in-
compressible) fluids. These fluids have viscosity µk and density ρk, where
k = 1, 2 refers respectively to the upper and lower fluid layers. Let the thick-
ness of the upper fluid be Θ(x, t) and that of the lower fluid be ζ(x, t); the
total thickness is h(x, t) = Θ(x, t) + ζ(x, t).

The governing equations are:

ρk(∂tu+ u∂xu+ w∂zu) = −∂xp+ (∂xτxx + ∂zτxz) + ρkg sinφ,

ρk(∂tw + u∂xw + w∂zw) = −∂zp+ (∂xτxz + ∂zτzz)− ρkg cosφ

∂xu+ ∂zw = 0.

Where k = 1, 2 depending whether we are in the upper or lower fluid. The
∂x, ∂z denote partial derivatives with respect to x and z, and τij denotes the
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deviatoric stresses. Since the fluids are Newtonian, what is the stress-strain
rate relation in each fluid?

You are required to non-dimensionalize the governing equations using L,H
as typical lengthscales in the x, z directions, where ε = H/L � 1. Choose
the velocity scale U for u, and pressure scale P for p to be

U =
ρ1gH

3 cosφ

µ2L
, P = ρ1gH cosφ.

Justify this choice of scales, that is, what effects do they balance?

Use the viscosity of fluid 2 as the reference viscosity when non-dimensionalizing
the stresses, and show that the non-dimensionalized equations (the hat dec-
oration on the variables denotes that they are non-dimensionalized) are:

ε2DkRe(∂t̂û+ û∂x̂û+ ŵ∂ẑû) = −∂x̂p̂+ ε∂x̂τ̂x̂x̂ + ∂ẑ τ̂x̂ẑ + SDk

ε4DkRe(∂t̂ŵ + û∂x̂ŵ + ŵ∂ẑŵ) = −∂ẑp̂+ ε2∂x̂τ̂x̂ẑ + ε∂ẑ τ̂ẑẑ −Dk

for k = 1, 2, and
∂x̂û+ ∂ẑŵ = 0.

Given that Dk = ρk/ρ1, identify the non-dimensional parameters S,Re.
Physically, what would you expect to happen if ρ2 < ρ1?
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