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1. The heat equation for a temperature field T (x, t) in x > 0 is

Tt = κTxx .

There are no phase changes. It is subject to boundary conditions

Tx = −f(Ts)

at x = 0 where Ts(t) = T (0, t) and f is a given function of temperature, and
T → Ti as x→∞ and T = Ti at t = 0.

Consider the integral balance method, setting

T = B + A

(

1−
x

δ(t)

)2

in a thermal boundary layer of width δ(t). Using appropriate boundary
conditions on x = δ determine A,B and δ in terms of Ti, Ts, f(Ts) and κ.

Show that Ts(t) is the solution of the transcendental equation

6κt =
∫ Ts

Ti

4(Ts − Ti)
f 3(Ts)

[2f(Ts)− (Ts − Ti)f
′(Ts)]dTs.

Further, setting f(Ts) = 1 show that Ts(t) = Ti +
(

3κt
2

) 1
2 and that the

thermal boundary layer thickness δ grows as (Ct)
1
2 for some constant C to

be determined.

Why would you anticipate the
√
t dependence in the boundary layer thick-

ness? Consider F = Tx as a new variable and show that the problem con-
sidered here, for F with f(Ts) = 1, is self-similar. Construct the solution for
Tx(x, t) and hence find that

Ts(t) = Ti +
2
√
κt
√
π
, you may use that

∫ ∞

0
erfc(τ)dτ = 1/

√
π.
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2. Fluid flow in the channel 0 < y < a can be modelled by a steady Poiseuille
velocity in the x-direction,

V (y) = βY (1− Y ) for some constant β where Y = y/a.

Defining y-averages over the channel cross-section for some quantity w by

w(x, t) =
1

a

∫ a

0
w(x, y, t) dy =

∫ 1

0
w dY ,

show that β = 6V . A chemical is carried passively by the fluid so that its

concentration u(x, y, t) satisfies

ut + V (y)ux = Duxx +Duyy with uy = 0 on y = 0, a .

Writing
u(x, y, t) = u(x, t) + u′(x, y, t) where u′ = 0,

show that
ut + V ux + V u′x = Duxx .

Explaining carefully the physical arguments for the approximations, show
that after a time long compared with a2/D,

u′ '
V uxa

2

D

(
Y 3 − 1

2
Y 4 − 1

2
Y 2 + 1

60

)
where Y = y/a.

Deduce that the effective shear-enhanced diffusion coefficient is

Deff = D +
V

2
a2

210D
.

Discuss briefly the physical processes involved and the practical significance
of this result when the diffusivity D is small. [N.B. You may find the result

6
5
− 9

6
+ 3

7
− 3

4
+ 3

5
+ 1

20
− 1

30
= − 1

210
useful. More marks will be awarded for

correct arguments than for correct arithmetic.]
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3. Give an account of any topic covered in the course not explicitly examined
on this paper. (For example, solidification or melting, surfactant transport,
flow in curved pipes, electrically charged drops etc.)

Discuss, as appropriate, the practical significance of the problem, the as-
sumptions of the model and the solution.
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4. Liquid metal occupies the slab 0 > y > −b. The region 0 < y < a contains
insulating gas, and a set of electromagnets at y = a generate an alternating
magnetic field which travels as a wave in the x-direction.
Writing B = ∇∧ (0, 0, ψ(x, y, t)), the governing equations for ψ are

∇2ψ = 0 in 0 < y < a , ∇2ψ = µ0σ
∂ψ

∂t
in 0 > y > −b

where σ and µ0 are respectively the conductivity and permeability of the
metal. On y = a, it is given that ψ = <e[Aei(kx−ωt)], where A is a known

complex constant and <e denotes the real part. On y = −b it may be
assumed that ψ ' 0 and ψ and ψy are continuous at y = 0.

Defining the skin-depth

δ =

(
2

ωµ0σ

)1/2

and assuming kδ � 1 and δ � b, find ψ(x, y) in the metal. Show that the
time-averaged Lorentz force, F ≡ ωσ

2
<e [iψ∇ψ∗] where ∗ denotes the complex

conjugate, is given by

F ' Ce2y/δ(k, −1/δ, 0) where C =
k2|A|2

2µ0 sinh2(ka)
.

As F depends only on y, it drives steady unidirectional flow u = (u(y), 0, 0).
Assuming the metal is a Newtonian fluid of viscosity µ and that no pressure
gradient acts in the x-direction, find u(y) given that that u = 0 on y = −b
and ∂u/∂y = 0 on y = 0.

Sketch the velocity profile.

c© University of London 2004
Turn over. . .

M4A33/MSA3 /Page 5 of 6



5. Consider the slumping of a finite volume of Newtonian fluid, fed at a constant
rate so the volume flux is constant, down a constant incline.

After non-dimensionalization we arrive at an evolution equation for the height
field, h(x, y, t),

∂h

∂t
+

∂

∂x

(
h3

3

(

S −
∂h

∂x

))

−
∂

∂y

(
h3

3

∂h

∂y

)

= 0.

The x co-ordinate points downslope and y is cross-slope. The slope parame-
ter, S, is zero for a horizontal plane.

Given this evolution equation, use similarity variables to obtain scalings for
the maximal height, h(0, 0, t), the maximal downslope, X+(t), and maximal
cross-slope, Y+(t), positions when S 6= 0 (justifying the omission of any
terms) and when S = 0.

For a real flow starting from an axisymmetric mound of fluid which scalings
are followed byX+(t) initially, and at a later stage? Sketch X+(t), Y+(t), h(0, 0, t)
versus t on log-log axes.
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