## M4A33 Industrial Mathematics Brief Notes on Electrodynamics

Electric charge is a conserved quantity which can have either sign. We use a continuum approach, with an electric charge density  $\rho(\mathbf{x},t)$ , so that the total charge in a volume V is

$$Q(t) = \int_{V} \rho(\mathbf{x}, t) dV \tag{1.2}$$

Flux of charge consistutes electric currents. A charge density  $\rho$  moving with velocity  $\mathbf{v}$  constitues an electric current density,  $\mathbf{j} = \rho \mathbf{v}$  (1.3). Note that because electrons can move relative to V sitively charged ions frequently a current density  $\mathbf{j}$  exists even though the net charge density  $\rho = 0$ . The current I flowing across an area A with unit normal  $\hat{\mathbf{n}}$  is

$$I = \int_{A} \mathbf{j} \cdot \widehat{\mathbf{n}} \, dS \tag{1.4}$$

The conservation of charge is expressed by the charge conservation law

$$\nabla \cdot \mathbf{j} + \frac{\partial \rho}{\partial t} = 0 \ . \tag{1.5}$$

Charges and currents give rise to an electric field **E** and a magnetic field **B**. These quantities are related by **Maxwell's equations**, which in S.I. units are

$$\nabla \cdot \mathbf{E} = \rho/\varepsilon \tag{1.6}$$

$$\nabla \wedge \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{1.7}$$

$$\nabla \cdot \mathbf{B} = 0 \tag{1.8}$$

$$\nabla \wedge \mathbf{B} = \mu \left( \mathbf{j} + \varepsilon \frac{\partial \mathbf{E}}{\partial t} \right) \tag{1.9}$$

The equations include two physical quantities which are assumed constant for the medium in question, the permittivity  $\varepsilon$  and pemeability  $\mu$ . In a vacuum  $\varepsilon = \varepsilon_0 \simeq 8.85 \times 10^{-12}$  and  $\mu = \mu_0 = 4\pi \times 10^{-7}$ . The speed of light in a vacuum, c, is given by  $c^2 \varepsilon_0 \mu_0 = 1$ .

Notes: (1) (1.6) relates the total charge in a volume to the total electric field coming out (Gauss' Law)  $Q = \varepsilon \oint \mathbf{E} \cdot \hat{\mathbf{n}} dS$ . (1.10)

(2) (1.7) is Faraday's Law of induction. Changing magnetic fields generate electric fields and potentials. If  $\partial \mathbf{B}/\partial t = 0$ , we have **electrostatics**, when we write

$$\mathbf{E} = -\nabla \phi(\mathbf{x})$$
 and  $\nabla^2 \phi = -\rho/\varepsilon$  (1.11)

- (3) The lack of a RHS in (1.8) means there are no "magnetic charges" (or monopoles). Magnetic dipoles exist, however (think of a little bar magnet)
- (4) The last term in (1.9) is called the **displacement current** and in many circumstances it can be neglected, as it is a relativistic correction.  $\nabla \wedge \mathbf{B} = \mu \mathbf{j}$  is **Ampère's Law**. The magnetic vector potential **A** is then defined by

$$\mathbf{B} = \nabla \wedge \mathbf{A}, \qquad \nabla \cdot \mathbf{A} = 0 \qquad \nabla^2 \mathbf{A} = -\mu \mathbf{j}$$
 (1.12)

(5) Maxwell's equations are relativistic, so that they remain invariant if we make a Lorentz transformation of  $(\mathbf{x}, t)$ . We shall not deal with relativity in this course, but we need to know how the fields seen by a moving charge relate to the ones seen in the laboratory frame. A particle moving with speed  $\mathbf{v}$  sees fields

$$\mathbf{B}^{part} = \mathbf{B}^{lab}, \qquad \mathbf{E}^{part} = \mathbf{E}^{lab} + \mathbf{v} \wedge \mathbf{B}^{lab} \tag{1.21}$$

A moving charge q feels a force  $\mathbf{f} = q(\mathbf{E} + \mathbf{v} \wedge \mathbf{B})$  (1.22), so that the force density on a continuum is

$$\mathbf{F} = \rho \mathbf{E} + \mathbf{j} \wedge \mathbf{B} \tag{1.24}$$

The last term in (1.24) is called the **Lorentz force**.

**Ohm's Law**: The extent to which an electric field can cwcauseget charges to move in a medium is represented by the **conductivity**  $\sigma$ , so that in a stationary medium  $\mathbf{j} = \sigma \mathbf{E}$  or in general

$$\mathbf{j} = \sigma(\mathbf{E} + \mathbf{v} \wedge \mathbf{B}) \tag{1.23}$$

If  $\sigma = 0$ , we say the medium is an insulator, otherwise a conductor. An initial charge distribution  $\rho(\mathbf{x}, 0)$  in a conductor decays to zero on the charge relaxation time-scale  $\tau = \varepsilon/\sigma$ , as the free charges combine or move away towards the boundary of the conducting region.

At a boundary between two different media, we must allow for surface current density  $\mathbf{j}_s$  and a surface charge density  $\rho_s$ . Across an interface where the electric properties  $\varepsilon_1, \mu_1, \sigma_1$  change to  $\varepsilon_2, \mu_2, \sigma_2$ , Maxwell's equations require

$$[\mathbf{B} \cdot \widehat{\mathbf{n}}] = 0, \quad [\widehat{\mathbf{n}} \wedge \mathbf{E}] = 0, \quad [\mathbf{j} \cdot \widehat{\mathbf{n}}] = 0, \quad [\varepsilon \mathbf{E} \cdot \widehat{\mathbf{n}}] = \rho_s, \quad [\widehat{\mathbf{n}} \wedge \mathbf{B}/\mu] = \mathbf{j}_s \quad (1.20)$$

where the square brackets denote the change in values across the interface, so that for example  $\rho_s = \varepsilon_2 \mathbf{E}_2 \cdot \hat{\mathbf{n}} - \varepsilon_1 \mathbf{E}_1 \cdot \hat{\mathbf{n}}$ . Thus normal **B** and tangential **E** are continuous. This latter condition means the electric potential  $\phi$  is continuous everywhere.

The stress on a surface can be found using the Maxwell stress tensor,  $T_{ij}$ , given by

$$T_{ij} = \varepsilon (E_i E_j - \frac{1}{2} \delta_{ij} |\mathbf{E}|^2) + (1/\mu) (B_i B_j - \frac{1}{2} \delta_{ij} |\mathbf{B}|^2)$$

$$\tag{1.25}$$

The stress (or traction) on a surface with normal  $\hat{\mathbf{n}}$  is  $[T_{ij}n_j]$ . Jumps in electric properties tend to lead to forces on the interface. Exercise: If the fields are steady, show that

$$F_i = \frac{\partial T_{ij}}{\partial x_i} \ . \tag{1.26}$$

The rate of working by the force  $\mathbf{f}$  is  $w = \mathbf{f} \cdot \mathbf{v}$ . This work is converted into heat, so that the Ohmic decay, or Joule heating rate density W is given by

$$W = \mathbf{F} \cdot \mathbf{v} = \mathbf{j} \cdot \mathbf{E} \tag{1.27}$$

If  $\mathbf{v} = 0$ , then  $W = |\mathbf{j}|^2 / \sigma$ .