M4A33 Industrial Mathematics Brief Notes on Electrodynamics

Electric charge is a conserved quantity which can have either sign. We use a continuum
approach, with an electric charge density p(x,t), so that the total charge in a volume V is

Q) = [ plx.tav (1:2)

Flux of charge consistutes electric currents. A charge density p moving with velocity v
constitues an electric current density, j = pv (1.3). Note that because electrons can move
relative to V sitively charged ions frequently a current density j exists even though the net
charge density p = 0. The current I flowing across an area A with unit normal n is
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The conservation of charge is expressed by the charge conservation law
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Charges and currents give rise to an electric field E and a magnetic field B. These quantities
are related by Maxwell’s equations, which in S.I. units are

V-E=p/e (1.6)
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V-B=0 (1.8)

VAB= '+8—E (1.9)
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The equations include two physical quantities which are assumed constant for the medium
in question, the permittivity ¢ and pemeability p. In a vacuum e = g9 ~ 8.85 x 1071? and
(= po = 4 x 1077, The speed of light in a vacuum, ¢, is given by c%equo = 1.

Notes: (1) (1.6) relates the total charge in a volume to the total electric field coming
out (Gauss’ Law) Q@ = e § E-ndS. (1.10)

(2) (1.7) is Faraday’s Law of induction. Changing magnetic fields generate electric
fields and potentials. If 0B/Jt = 0, we have electrostatics, when we write

E = —V¢(x) and V¢ = —p/e (1.11)

(3) The lack of a RHS in (1.8) means there are no “magnetic charges” (or monopoles).
Magnetic dipoles exist, however (think of a little bar magnet)

(4) The last term in (1.9) is called the displacement current and in many circum-
stances it can be neglected, as it is a relativistic correction. V A B = puj is Ampere’s
Law. The magnetic vector potential A is then defined by

B=VAA, V-A=0 VA =—4j (1.12)



(5) Maxwell’s equations are relativistic, so that they remain invariant if we make a
Lorentz transformation of (x,t). We shall not deal with relativity in this course, but
we need to know how the fields seen by a moving charge relate to the ones seen in the
laboratory frame. A particle moving with speed v sees fields
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A moving charge ¢ feels a force f = ¢(E + v A B) (1.22), so that the force density on a
continuum is

F=pE+jAB (1.24)

The last term in (1.24) is called the Lorentz force.

Ohm’s Law: The extent to which an electric field can cwcauseget charges to move in
a medium is represented by the conductivity o, so that in a stationary medium j = ¢E
or in general

j=o(E+vAB) (1.23)

If 0 = 0, we say the medium is an insulator, otherwise a conductor. An initial charge
distribution p(x,0) in a conductor decays to zero on the charge relaxation time-scale 7 =
¢/o, as the free charges combine or move away towards the boundary of the conducting
region.

At a boundary between two different media, we must allow for surface current density
Js and a surface charge density ps;. Across an interface where the electric properties
€1, 41,01 change to e, g, 09, Maxwell’s equations require

B-f]=0, [AAE|=0, [j-8]=0, [E-f]=p, [AAB/u=j, (1.20)

where the square brackets denote the change in values across the interface, so that for
example ps = e2Ey - n — ¢1E; - n. Thus normal B and tangential E are continuous. This
latter condition means the electric potential ¢ is continuous everywhere.

The stress on a surface can be found using the Maxwell stress tensor, Tj;, given by

T;; = e(B;Ej — 36 |E[) + (1/p)(B:B; — 16;;|B|?) (1.25)

The stress (or traction) on a surface with normal n is [T;;n;]. Jumps in electric properties
tend to lead to forces on the interface. Exercise: If the fields are steady, show that
aTi]‘
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Oz

(1.26)

The rate of working by the force f is w = f - v. This work is converted into heat, so that
the Ohmic decay, or Joule heating rate density W is given by

W=F-v=j-E (1.27)

If v=0, then W = |j|*/o.



