M4A33; TIG-welding: Current source in liquid metal half-space

In the TIG (Tungsten/Inert Gas) welding process, two metallic surfaces are brought into
contact, and a strong electric current is introduced at the join. The resultant heating melts
the metal in the vicinity of the electrodea .The electrode passes slowly along the interface
and the liquid metal solidifies behind it, thus welding the metals together.

We model the behaviour in the weldpool by considering an infinite half-space of liquid
metal, occupying 0 < € < 7 in terms of spherical polar coordinates (r, 6, n), with an
axis pointing into the metal. (Note: in lectures the axis pointed up, so that § — = — 6.)
A constant electric current I enters the liquid metal pool at the origin. The metal has
kinematic viscosity v and density p.

As the configuration is axisymmetric, we expect the magnetic field B, current density
J and velocity u also to be independent of n. Furthermore, j will be entirely radial and
a function only of r. [As the magnetic Reynolds number is small, we can neglect the
magnetic induction term uAB. Then as j = ¢E and VAE = 0, we have VAj = 0 also] B
will therefore be in the n-direction (azimuthal or toroidal), and the Lorentz force j A B acts
in the (r, 8) (or poloidal) plane. As this force is rotational (V A (j A B) # 0), it cannot
be balanced by a pressure gradient and so necessarily drives fluid motion. As the driving
force is poloidal, we might expect the velocity also to be poloidal. In that case it can be
represented by a streamfunction ¢ (r, #). We therefore write
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We will make frequent use below of the following formulae: In terms of spherical polar
coordinates (r, 8, n), an axisymmetric vector F(r,0) = (F,, Fy, F,) satisfies
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Firstly, we note that by charge conservation V - j = 0, so that for some constant o
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since the total current flowing across a hemisphere around the origin is I. Using Ampere’s
Law, V A B = poj,
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so that B = b(#)/r where, as b must be finite on the axis § = 0,
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Combining (4) and (5), VA (JA B) = (0, 0, G) where
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Since the driving term V A (j A B) ~ r=* and there is no natural length-scale in the
problem, we seek a similarity solution with u ~ 77! and w = VA u ~ r~2. With this
scaling both V A (u A w) and V2w will scale as r~* also. Writing ¢ = vrf(0) = vrg(p),

where u = cos 8, so that % = - sin@%, we have, from (1),
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where ' denotes differentiation with respect to y. Thus uAw = :—5(99”7 —sinfg’'g"”,0) and
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Similarly, using (3) twice, VA w = % ([sin2 64", —sinfg", O) and as sin? § = 1 — 2,
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Thus, from (6), (8), and (9), the vorticity equation, VA (uAw)+ %V AGAB)+vVie =0
only has an azimuthal component, and reduces to an ODE. This equation can in fact be
integrated three times so that, for arbitrary constants A , C' and D
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Two boundary conditions are that ¢(0) = 0 and g(1) = 0, so that the axis and metal surface
are streamlines. In addition, we need either a stress-free or no-slip condition on the surface
g = 0. (10) can then be integrated numerically. The third boundary condition seems not to
affect the flow qualitatively. It is found that the flow has a jet-like structure along the axis
(0 =0 or p = 1) away from the electrode. Interestingly, for large enough K (K > 200.1
for the no-slip case, ¢’(0) = 0) it is found that the velocity on the axis becomes infinite
(¢'(1) = o). Clearly, a real fluid would avoid this singularity somehow. Experimental
observations show that an axial jet is indeed formed which increases in strength as K
increases. However, before the theoretical singularity is reached, the fluid starts to rotate.
If we return to (1), we can allow for this in our similarity solution, including an azimuthal
swirl velocity v(6)/r. We then obtain two coupled ODEs, which are found to avoid the
above singularity as K — oo.



