M.Eng. 2.6 Mathematics: Grad, Div and Curl

This sheet can be found on the Web: http://www.ma.ic.ac.uk/~ajm8/MEng26

A function F which associates a vector value F(r) = F(z,y, z) = Fi(r)i + F3(r)j + Fs(r)k with
every position vector r = zi+ yj+ zk is said to be a VECTOR FIELD, e.g. velocity of a fluid.

Recall if f(r) is a scalar field, then
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Similarly, we introduce
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The equivalent notation curl F = V A F is sometimes used.
Note that V x F Z F x YV, which is a vector operator; i.e.
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Therefore we have that

grad : scalar field — vector field
div : vector field — scalar field
curl : vector field — vector field

RULES: For arbitrary scalar fields f(x), g(r) and vector fields F(r), G(r); then we have that
1) = V(f+g) &+ &g).
2 (F+G) =Y -F)+ (Y- G).
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2) and (1) =
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= (V) F+ f(V-F).
Similarly (3) and (1) =
x (fE)=(Vf) xE + f(V xF).
We introduce the LAPLACIAN operator V2 : scalar field — scalar field, defined by
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Tt is simple matter to show using the definitions (1), (2) and (3) that
Vx(¥Vf)y=0 and Y- (VxF)=0.

RECALL: Conservative Vector Fields and Path Independence
Given a vector field F(r) = Fi(r)i+ Fa(r)j + F3(r)k, if there exists a ¢(r) satisfying
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that is, / F - dr depends only on the start point A and the end point B, NOT on the particular
CasB

path C joining A to B. We showed that a ¢ satisfying (4a) exists, and hence that (4b) holds, if
and only if F(r) satisfies the 3 conditions
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Such an F is called CONSERVATIVE with the corresponding ¢ being the POTENTIAL of F.
In terms of grad and curl, (5) =V x F =0 and (4a) = F = V ¢ . Therefore we have that

F conservative <= YV xF=0 <= F=V¢ forsome¢d <= (4b).




