M.Eng. 2.6 Mathematics: Grad, Div and Curl

This sheet can be found on the Web: http://www.ma.ic.ac.uk/~ajm8/MEng26

A function $\underline{\mathbf{F}}$ which associates a vector value $\underline{\mathbf{F}}(\underline{\mathbf{r}}) \equiv \underline{\mathbf{F}}(x, y, z) \equiv F_1(\underline{\mathbf{r}})\underline{\mathbf{i}} + F_2(\underline{\mathbf{r}})\underline{\mathbf{j}} + F_3(\underline{\mathbf{r}})\underline{\mathbf{k}}$ with every position vector $\underline{\mathbf{r}} \equiv x \, \underline{\mathbf{i}} + y \, \underline{\mathbf{j}} + z \, \underline{\mathbf{k}}$ is said to be a **VECTOR FIELD**, e.g. velocity of a fluid.

Recall if $f(\mathbf{r})$ is a scalar field, then

the gradient of
$$f \equiv \operatorname{grad} f \equiv \underline{\nabla} f \equiv \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$
. (1)

$$\underline{\nabla} \equiv \underline{\mathbf{i}} \frac{\partial}{\partial x} + \underline{\mathbf{j}} \frac{\partial}{\partial y} + \underline{\mathbf{k}} \frac{\partial}{\partial z} \text{ is a VECTOR OPERATOR}, \qquad \underline{\nabla} : \text{scalar field} \to \text{vector field}.$$

Now introduce

the divergence of
$$\underline{\mathbf{F}} \equiv \operatorname{div} \underline{\mathbf{F}} \equiv \underline{\nabla} \cdot \underline{\mathbf{F}} \equiv \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$
. (2)

Note that

$$\underline{\nabla} \cdot \underline{\mathbf{F}} \not\equiv \underline{\mathbf{F}} \cdot \underline{\nabla} \equiv F_1 \frac{\partial}{\partial x} + F_2 \frac{\partial}{\partial y} + F_3 \frac{\partial}{\partial z},$$

which is a scalar operator; i.e.

$$\underline{\mathbf{F}} \cdot (\underline{\nabla} f) \equiv F_1 \frac{\partial f}{\partial x} + F_2 \frac{\partial f}{\partial y} + F_3 \frac{\partial f}{\partial z} \equiv (\underline{\mathbf{F}} \cdot \underline{\nabla}) f.$$

Similarly, we introduce

$$\operatorname{curl} \mathbf{\underline{F}} \equiv \nabla \times \mathbf{\underline{F}} \equiv \begin{vmatrix} \mathbf{\underline{i}} & \mathbf{\underline{j}} & \mathbf{\underline{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_{1} & F_{2} & F_{3} \end{vmatrix}$$

$$\equiv \left(\frac{\partial F_{3}}{\partial y} - \frac{\partial F_{2}}{\partial z} \right) \mathbf{\underline{i}} - \left(\frac{\partial F_{3}}{\partial x} - \frac{\partial F_{1}}{\partial z} \right) \mathbf{\underline{j}} + \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) \mathbf{\underline{k}}. \tag{3}$$

The equivalent notation curl $\underline{\underline{\mathbf{F}}} \equiv \underline{\nabla} \wedge \underline{\mathbf{F}}$ is sometimes used.

Note that $\nabla \times \mathbf{F} \not\equiv \mathbf{F} \times \nabla$, which is a vector operator; i.e.

$$\underline{\mathbf{F}} \times (\underline{\nabla} f) \equiv \left(F_2 \frac{\partial f}{\partial z} - F_3 \frac{\partial f}{\partial y} \right) \underline{\mathbf{i}} - \left(F_1 \frac{\partial f}{\partial z} - F_3 \frac{\partial f}{\partial x} \right) \underline{\mathbf{j}} + \left(F_1 \frac{\partial f}{\partial y} - F_2 \frac{\partial f}{\partial x} \right) \underline{\mathbf{k}}$$
$$\equiv (\underline{\mathbf{F}} \times \underline{\nabla}) f.$$

Therefore we have that

RULES: For arbitrary scalar fields $f(\underline{\mathbf{r}})$, $g(\underline{\mathbf{r}})$ and vector fields $\underline{\mathbf{F}}(\underline{\mathbf{r}})$, $\underline{G}(\underline{\mathbf{r}})$; then we have that

- $(1) \Longrightarrow \underline{\nabla}(f+g) \equiv (\underline{\nabla}f) + (\underline{\nabla}g).$
- $(2) \Longrightarrow \underline{\nabla} \cdot (\underline{\mathbf{F}} + \underline{G}) \equiv (\underline{\nabla} \cdot \underline{\mathbf{F}}) + (\underline{\nabla} \cdot \underline{G}).$
- $(3) \Longrightarrow \underline{\nabla} \times (\underline{\mathbf{F}} + \underline{G}) \equiv (\underline{\nabla} \times \underline{\mathbf{F}}) + (\underline{\nabla} \times \underline{G}).$
- (2) and $(1) \Longrightarrow$

$$\underline{\nabla} \cdot (f \, \underline{\mathbf{F}}) \equiv \underline{\nabla} \cdot \left[(f \, F_1) \underline{\mathbf{i}} + (f \, F_2) \underline{\mathbf{j}} + (f \, F_3) \underline{\mathbf{k}} \right] \equiv \frac{\partial (f \, F_1)}{\partial x} + \frac{\partial (f \, F_2)}{\partial y} + \frac{\partial (f \, F_3)}{\partial z}
\equiv \left[F_1 \, \frac{\partial f}{\partial x} + f \, \frac{\partial F_1}{\partial x} \right] + \left[F_2 \, \frac{\partial f}{\partial y} + f \, \frac{\partial F_2}{\partial y} \right] + \left[F_3 \, \frac{\partial f}{\partial z} + f \, \frac{\partial F_3}{\partial z} \right]
\equiv (\underline{\nabla} f) \cdot \underline{\mathbf{F}} + f (\underline{\nabla} \cdot \underline{\mathbf{F}}).$$

Similarly (3) and (1) \Longrightarrow

$$\underline{\nabla} \times (f \underline{\mathbf{F}}) \equiv (\underline{\nabla} f) \times \underline{\mathbf{F}} + f (\underline{\nabla} \times \underline{\mathbf{F}})$$

We introduce the **LAPLACIAN** operator ∇^2 : scalar field \rightarrow scalar field, defined by

$$\nabla^2 f \equiv \underline{\nabla} \cdot (\underline{\nabla} f) \equiv \underline{\nabla} \cdot \left(\frac{\partial f}{\partial x} \underline{\mathbf{i}} + \frac{\partial f}{\partial y} \underline{\mathbf{j}} + \frac{\partial f}{\partial z} \underline{\mathbf{k}} \right) \equiv \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$$

It is simple matter to show using the definitions (1), (2) and (3) that

$$\underline{\nabla} \times (\underline{\nabla} f) = \underline{0}$$
 and $\underline{\nabla} \cdot (\underline{\nabla} \times \underline{\mathbf{F}}) = 0$.

RECALL: Conservative Vector Fields and Path Independence

Given a vector field $\underline{\mathbf{F}}(\underline{\mathbf{r}}) \equiv F_1(\underline{\mathbf{r}})\underline{\mathbf{i}} + F_2(\underline{\mathbf{r}})\underline{\mathbf{j}} + F_3(\underline{\mathbf{r}})\underline{\mathbf{k}}$, if there exists a $\phi(\underline{\mathbf{r}})$ satisfying

$$\frac{\partial \phi}{\partial x} = F_1, \qquad \frac{\partial \phi}{\partial y} = F_2, \qquad \frac{\partial \phi}{\partial z} = F_3;$$
 (4a)

then

$$\int_{C_{\underline{\mathbf{A}}} \to \underline{\mathbf{B}}} \underline{\mathbf{F}} \cdot d\underline{\mathbf{r}} = \int_{C_{\underline{\mathbf{A}}} \to \underline{\mathbf{B}}} \left[\frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz \right] = \int_{C_{\underline{\mathbf{A}}} \to \underline{\mathbf{B}}} d\phi = \phi(\underline{\mathbf{B}}) - \phi(\underline{\mathbf{A}}); \tag{4b}$$

that is, $\int_{C_{\underline{\mathbf{A}}\to\underline{\mathbf{B}}}} \underline{\mathbf{F}} \cdot d\underline{\mathbf{r}}$ depends only on the start point $\underline{\mathbf{A}}$ and the end point $\underline{\mathbf{B}}$, NOT on the particular path C joining $\underline{\mathbf{A}}$ to $\underline{\mathbf{B}}$. We showed that a ϕ satisfying (4a) exists, and hence that (4b) holds, if and only if $\underline{\mathbf{F}}(\underline{\mathbf{r}})$ satisfies the 3 conditions

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}, \qquad \frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x}, \qquad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y}. \tag{5}$$

Such an $\underline{\mathbf{F}}$ is called **CONSERVATIVE** with the corresponding ϕ being the **POTENTIAL** of $\underline{\mathbf{F}}$. In terms of grad and curl, $(5) \equiv \underline{\nabla} \times \underline{\mathbf{F}} = \underline{0}$ and $(4a) \equiv \underline{\mathbf{F}} = \underline{\nabla} \phi$. Therefore we have that

F conservative
$$\iff \nabla \times \mathbf{F} = 0 \iff \mathbf{F} = \nabla \phi \text{ for some } \phi \iff (4b)$$
.