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Most differential equations are non-linear, and can rarely be solved exactly. However, it
is usually possible to obtain arbitrarily accurate approximate solutions on computers. We
will now discuss various methods for doing this.

As we are dealing with ODESs, there is only one independent variable, which we will
now call = rather than ¢. All systems of ODEs can then be expressed in terms of a vector
of unknowns, y(z) which obeys the equation
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o= (z, y(x)) where f is a vector of known functions.
x

We shall concentrate on the one-dimensional problem, as most of the methods we consider
can easily be generalised to more dimensions. Suppose therefore that y(z) solves the
problem

dy

= = fle,y(x))  with y(a)=b. (1)

Picard Iteration: This method is more of theoretical than practical interest. However,
it is on the syllabus. We note that, formally, we can integrate (1) to give

y(x) = b+ / " f () dt 2)

As y(t) is not known, we cannot evaluate the above integral. However, we can use it to
define a sequence of functions, y,(z), as follows:
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Ynt1(z) = b+ /1’ ft, yn(t))dt in general.

Each of the functions y, is defined in terms of the previous one, y,,—1, although we may
or may not be able to evaluate the integrals. Suppose now that as n — oo, y,(z) — y(z),
where y(x) is some function. In that case, y(z) is the solution to (2).

Example: Consider the problem

y' = 2zy with y(0)=1. (3)

[Exercise: Show that the exact solution to this problem is y(z) = exz.]

Then in integral form,

y(x) = 1—|—/0r2ty(t)dt .
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Proceeding as above, yo(z) = 1,

yi(z) =1 +/ 2t(1)dt = 1 + z*
0

ya(2) =1+ / 2¢(1 + tz)dt =14 224 %.1‘4 and eventually
0
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Letting n — oo, we have the solution
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Finite Difference Methods

It is important to realise that most ODEs do not have a solution in terms of simple
functions. However, they will have solutions which can be expressed as graphs, say. How
can we obtaln an approximation to the curves on these curves? A simple idea is to try
to find some points which lie on, or close to, these graphs and join them up. So choose a
step-length %, and define the values z,, = a+nh, wheren = 0, 1, 2... The exact solution
at the value © = z,, can be written y(z,). We shall now seek some values y,, which we hope
will approximate the real values. To do this we must translate the differential equation
into an approximate equation valid at the discrete points {z, }.

We recall the Taylor series for the function y(x + h):

y(z +h)=y(z) + hy'(;z;) + %h2y"($) + %h?’y”’(:z:) + ih‘ly""(m) + ...

Assuming h is small, we can therefore approximate the derivative y'(z) by

y'(z) = y(z + h}z —y(z) B %hy”(x) + O(hz) ‘

Here O(h?) denotes things which tend to zero as h — 0 at least as fast as k2. Now if we
take x = z,, then by definition x + h = x, + h = x,41 and so

y/(xn) _ y($n+1)h_ y(iﬂn) + O(h) ~ yn+1h_ Yn

assuming that y, is a good approximation to y(z,). We can use this last approximation
in (1), to define the values y,, as the solution to

This last relation is known as Euler’s method.



