M.Eng. 2.6 Mathematics: Finite Difference Methods for PDEs
This sheet can be found on the Web: http://www.ma.ic.ac.uk/~ajm8/MEng26

Only simple PDEs can be solved exactly, but most PDEs can be solved numerically, pro-
vided they come with suitable boundary conditions. A suitable approach uses Finite
Differences, which we met when solving ODEs (see the sheets on Euler’s method and the
Trapezium method).

As an example, suppose we want to solve the diffusion equation for u(z, t),

Up = Ugy in —occ<zr<oo, t>0 with wu(z, 0) = f(z) ,
where f(z) is a given function. We choose steplengths h and k, and define a rectangular
grid in the (z, t) plane. We use a superscript j and a subscript n to denote the grid point
(nh, jk), so that
u! = u(nh, jk) for 7=0,1,2... and integers n.
Then we can relate the values of u at adjacent grid points using Taylor series:
wIT = wu(nh, jk+ k) = (w4 kuy + 2K uy + O(k?’))i

so that , ‘
u%—i-l —

A "= (ut)i + %k<utt)i + O(k?) . (1)
Similarly,
Whay = ulnh £ h, jk) = (w hus + 300000 £ §10000s + G1h* s + O(W7))),

Adding the expansions for uf‘l_H and ui_l, we find

J 9. J
un—|—1 2un —I_ un—l

h2

Ignoring terms of O(k) in (1) and of O(h?) in (2), we obtain Finite Difference Approx-
imations to u; and u,, on the grid points in terms of neighbouring values of u. So since
Ut = Ugr,

wltt —ul wl = 2ud 4ol
: :< +1 = Ll +0(k 1% .

Defining r = k/h?%, we can define U/, an approximation to the real solution u? at the point
x =nh, t = jk, by ‘ ‘ ‘ .
Ut =rUl 4+ (1=20)UL + U, . (3)

n n—1

We now impose the initial condition by requiring U2 = f, = f(nh).

Repeated use of (3) with j = 0 and n taking all values, enables us to calculate U} for all
n. We then use (3) with j = 1 to find U2, and so on. We can therefore calculate U} for
all n and j, so that we have an approximation to the real solution everywhere on the grid.

Equation (3) is an analogue of Euler’s method for ODEs. It is an explicit method:
the unknowns on the left-hand side are given as simple formulae of known values. We can
examine how accurate the method is by looking at the Truncation Error, EJ, of the

method. This is defined as the amount by which the exact solution fails to satisfy the
approximate equation, so that

+1 j J ‘ J
B — uf ™t —uj | Yngr T 2ug, + up_y
" k h?

Using (1) and (2) overleaf, we have

- (ut - uxr)i ‘I’ (%kutt - %h2urrxr)i ‘I’ O(k27h4) .

Now we know that u; = u,, and differentiating with respect to ¢ we have uy = w4 But
Ugrpt = (Ut)zy = Ugpzse for this equation. So finally we can write
E} = Yuy(k — 10%) + O(K?, 1) .

Thus usually the method is first order in k£ and second order in h. We note, however, that
we can choose k and h as we please. If we choose the time-step k such that k& = éhZ (or
r= é) then the method is second order in k also. This is known as Milne’s method.

The explicit method (3) is very easy to use, and can be made arbitrarily accurate by
choosing k& and h small enough. What then is the problem? We will try it on a computer
and see what can go wrong. On problem sheet 5, we show that the method is unstable
l.e. 1t breaks down if r > % We therefore want k < %h2 which means that if & 1s to be
fairly small, the timestep k& must be tiny, which is computationally inefficient.

The Crank-Nicolson method is an important alternative to the explicit method,
and is similar to the Trapezium method for ODEs. It is given by

v - (vz;ﬂ _ovg+ Uz;_l) o (Uf;ii w4 U:;ti)

k 2 h2 2 h2 (4)
or

(2 + 27“)U£+1 — rUf:_i — rU,];'__i = rUj_H + (2 - QT)U,?; + rU?

n n—1 -

The Crank-Nicolson method is stable for all values of k and h, and as shown on problem
sheet 5, it has a truncation error EJ = O(k2,h?). Thus, it is possible to choose h and k
of similar size without significant loss of accuracy. The price which must be paid is that
(4) is an implicit method. Each time-step, it is necessary to solve a set of simultaneous
equations for the unknown values U/ *! in terms of the known values UJ. Nevertheless,
the Crank-Nicolson method is usually used in practice.

