M.Eng. 2.6 Mathematics: Iterative Methods for Elliptic PDEs
This sheet can be found on the Web: http://www.ma.ic.ac.uk/~ajm8/MEng26

We have seen how to solve Parabolic PDEs on a computer by time-stepping methods.
Similar techniques can be used for Hyperbolic PDEs but they are not part of the syllabus.
Elliptic PDEs are different, however, as there is no ‘time-like’ variable. Instead the
solution must be found everywhere at once.

Consider the two-dimensional Poisson equation for u(z, y) in a rectangle

VU = ugy + uyy = f(z, y) in 0<z<a O0<y<bd (1)

with « known over the rectangular boundary. We divide the rectangle into MN h x k
rectangles, where Mh = a and Nk = b. We then seek an approximation to u;,, =
u(mh, nk)form=1,...M —1andn=1,... N — 1. The values ugn, 4srn, Umo and U,
are known from the boundary conditions and so of course we set Uy, = ug, etc.

As before, using Taylor series we can derive the formula

Um+in — 2Umn + Um—1n
(ul’l’)mn - = 72 4 O(h2)

and similarly

Umn4+1 — 2umn + Um n—1
(uyy)mn = k2 + O(k2)

Combining these, we can define an approximation U, to u;,, as the solution to

2 2

1 1
_(Um—l—ln ‘I’Um—ln) + _<Umn—|—1 ‘I’Umn—l) - <h_2 + k_2> Umnn = fmn > (2)

h? k?
where fn,, = f(mh, nh). Equation (2) holdsform =1,...M —landn =1,... N —1 and
so defines (M — 1) x (N — 1) equations in total. Furthermore, each equation is linear in
the (M — 1) x (N — 1) unknowns Uy, (recall that Ugpy,, Uprn, Umo and Uy, pr are known.)
In general, therefore, solving (1) is equivalent to solving a large number of simultaneous
linear equations, which we can write as Av = b, where A is a square matrix, v and b are
unknown and known vectors, respectively. We could order the unknowns by scanning the
y-direction for fixed x, for example, so that

T
v =(Ui1,U12,... Ut n-1,U21,U22 ... Upr—a N—1, Uni—11 .. . Um—1 n—1)

The vector b is determined by f,,, and the boundary conditions.
From now on, for simplicity, we will assume A = k. Then (2) can be rewritten as

Um—l—ln‘l’Um—ln‘l’Umn—l—l‘l’Umn—l_4Umn:hmen- (3)

This is often known as the 5-point formula for the Laplacian.

Jacobi and Gauss-Seidel Iteration

The matrix A is very large, and very sparse: almost all its entries are zero. In each
row of A there is a —4 on the diagonal, at most four entries of 1 while the rest are zero.
We could use Gaussian elimination to solve Av = b, but this tends to ‘fill in” many of
the zeros. A very important idea is to find the solution iteratively.

Jacobi iteration: The method is as follows: First, rewrite the equations in the form

(0)

Upmn = something. Then make some initial guess Uy, of the solution for all m and n.

Then use (3) to provide a new estimate U,(T{j{l) from the old estimate U,(Tf,)l according to:

v =1ud,,

+ U L+ U U B f| for j=0,1... (4)
Each iteration, the entire grid is scanned using the old estimates on the right hand side. If
the new estimate is the same as the old everywhere, then that must be the solution to (3).

Gauss-Seidel iteration: This is similar to Jacobi iteration, except that we scan the
grid in a definite order, using the new estimates on the right hand side as soon as they
become available. In a practical computer program, we might overwrite the old values
with the new ones. If we scan the grid in the same order as the elements of v overleaf, the
formula can be written

‘ - : - : ‘
UGED = | URE + U w + US4 Uy = B fon | (5)
For this problem, it can be shown that both the Jacobi and Gauss-Seidel methods work,

and that the latter converges faster and so is usually preferable. However, if you are
working on a parallel processing machine, the Jacobi algorithm can be more appropriate.

Why not just use the exact formula for the inverse matrix?

You should have met the formula for an inverse matrix, in terms of the matrix of
cofactors, or adjoints. So why not use a fast computer to calculate v = A7'b? Suppose
we have a Cray capable of 10° multiplications per second, and have a mere 20 x 20 matrix
to invert. (In practice A may be 10* x 10*). The cofactor of an element of an n x n matrix
is essentially an (n — 1) x (n — 1) determinant. Suppose T,, multiplications are needed to
calculate an n x n determinant. Clearly 75 = 2. If we define the n x n determinant by
expanding it along a row, then we need to calculate n smaller (n—1) x (n—1) determinants.
Thus approximately

To,=nTh_1=nn—1)T,_2 =n(n—1)(n—2)...(3)(2) =n!.

Using the formula to invert an n x n matrix A requires calculating n? cofactors and then
the determinant of A. So proceeding naively, we can find the inverse matrix A~! using

Total multiplications = n*T,_ + T}, = n2(n —Dl+nl=m+1).

Thus a Cray would take 21! x 107 seconds to invert a 20 x 20 matrix. This is about 1619
years! Admittedly, the method used was very crude, but this demonstrates the point of
thinking about the algorithm. An iterative method would take about a microsecond.

