M.Eng. 2.6 Mathematics: More on ODEs with Constant Coefficients.
This sheet can be found on the Web: http://www.ma.ic.ac.uk/~ajm8/MEng26

Let x(t) be an n-dimensional vector which varies with time, and suppose that
x = Ax where A is a constant, real n x n matrix. (1)

Recall from earlier in the course how to solve this problem: If A has n eigenvectors, ey, €,
e, , with corresponding eigenvalues Ay, Ay ... A,, so that Ae;, = A\re, for k =1...n,

L

then the General Solution to (1) can be written

X = Clgle)\lt + 02§2€A2t +...+ Cngne)\nt )

where ¢y, ¢y ... ¢, are arbitrary constants. If we know the value of x at, say, t = 0, then
we can find the constants and determine the unique solution.

This procedure is fairly straightforward if the eigenvalues are all real. If, however, two
or more of the Ay are complex, then so will be the eigenvectors and constants. The analysis
goes through unchanged, but we may want to rewrite e(®t)? ag e®(cos Bt + i sin (t).

Why is equation (1) important? Because every set of linear differential equations
with constant coefficients can be written in that form, by defining new unknown variables.
For example, the charge Q(t) flowing in an electric circuit of capacitance C, resistance R
and inductance L obeys the equation

LC)—I—RQ—I—%CJ:O. (2)

If we want, we can rewrite this equation as

x = Ax where §:<Q> and Az( 01 1)
Q -

We can then find the eigenvalues in the usual way, setting det(A — A\I) = 0.
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Solving this quadratic gives the eigenvalues A\ and Ay for which the eigenvectors are
(1, \)T and (1, A\2)T respectively. Although in this case it is easier to solve (2) directly,
this may not be the case for more complicated circuits.

Another important example of (1) occurs in the study of vibrations and stability of
structures. Consider a mechanical system with n degrees of freedom which we measure
with x = (21, 22, ..., 2,) 7. If the system is disturbed slightly from equilibrium, its motion
is governed by an equation like

Mx+ Kx=0 where M and K are symmetric, constant n X n matrices. (3)
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By introducing new variables for #; etc, we could write (3) in the form of (1). Equivalently,
we can look for solutions of (3) behaving like x = e ¢! or, if you hate complex numbers,
X = ecoswt. Here e is a constant vector, called a normal mode of vibration. The
corresponding value of w is called a normal frequency [c.f. “characteristic values” in
your Vibrations course.] Substituting in (3), we see that it is a solution provided

Ke = w?Me or Ke=uw’e taking M = I for simplicity. (4)

Therefore if M is the identity matrix, we need e to be an eigenvector of K with corre-
sponding eigenvalue \ and w = +v/\.

As the matrix K is symmetric the eigenvalue A is real. If A < 0, then w is imaginary
and the equilibrium is unstable, whereas if all the eigenvalues are positive it is stable.
The frequencies, and modes of vibration are then given by the possible values of w and the
eigenvectors e. The general motion of the system is the superposition of all the normal
modes

X = ey (a1 cos \/ A1t + by sin\/A\it) + e,(az cos v/ Aat + by siny/Aat) + ... (5)

Example: Two heavy masses are connected by three light stretched strings to each
other and to two fixed points. Their displacements perpendicular to the strings are x;(t)
and z2(t). Discuss the resulting equation of motion

. . ) . 1 - 2 -1
x+Kx=0 where x = <$2> and K = <_1 5 > ) (6)

Writing y = (21, 21, =2, i:g)T find the 4 x 4 matrix A such that y = Ay.
Find the eigenvectors and eigenvalues of K and hence the general motion of the system.
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