M.Eng 2.6 Problem Sheet 6: Vector Calculus

This sheet can be found on the Web: http://www.ma.ic.ac.uk/~ajm8/MEng26

Throughout this sheet we use the notation $\underline{\mathbf{r}} = x\underline{\mathbf{i}} + y\mathbf{j} + z\underline{\mathbf{k}}$ and $r = |\underline{\mathbf{r}}|$.

- 1. Find the directional derivative of $\phi(x, y, z) = 4xz^3 3x^2y^2z$ in the direction $2\underline{\mathbf{i}} 3\underline{\mathbf{j}} + 6\underline{\mathbf{k}}$ at the point (2, -1, 2).
- 2. Obtain the gradients of the following scalar fields:-

(i) y, (ii) $x^3 + y^3 + z^3$, (iii) $\underline{\mathbf{r}} \cdot \underline{\nabla} (x + y + z)$, (iv) r^n .

- 3. Find the equation of the tangent plane to the surface $xz^2 + x^2y = z 1$ at the point (1, -3, 2).
- 4. Show that $(\underline{\mathbf{F}} \cdot \underline{\nabla})\underline{\mathbf{r}} = \underline{\mathbf{F}}$ for any vector field $\underline{\mathbf{F}}$.
- 5. If $\underline{\mathbf{a}}$ is a constant vector and $\underline{\mathbf{v}} = (\underline{\mathbf{a}} \cdot \underline{\mathbf{r}})\underline{\mathbf{r}}$, find $\underline{\nabla} \cdot \underline{\mathbf{v}}$ and $\underline{\nabla} \times \underline{\mathbf{v}}$.
- 6. Obtain the curls of the following vector fields:-

(i) $x \mathbf{\underline{i}}$, (ii) $y \mathbf{\underline{i}}$, (iii) $\mathbf{\underline{r}}$, (iv) $f(r) \mathbf{\underline{r}}$, (v) $(x \mathbf{\underline{i}} - y \mathbf{\underline{j}})/(x + y)$.

- 7. If f is an arbitrary scalar field and $\underline{\mathbf{F}}$, $\underline{\mathbf{G}}$ are arbitrary vector fields, verify the identities:(i) $\underline{\nabla} \times (\underline{\nabla} f) = \underline{0}$, (ii) $\underline{\nabla} \cdot (\underline{\nabla} \times \underline{\mathbf{F}}) = 0$, (iii) $\underline{\nabla} \cdot (\underline{\mathbf{F}} \times \underline{\mathbf{G}}) = \underline{\mathbf{G}} \cdot (\underline{\nabla} \times \underline{\mathbf{F}}) \underline{\mathbf{F}} \cdot (\underline{\nabla} \times \underline{\mathbf{G}})$.
- 8. If $\underline{\mathbf{F}} = x^2 y \, \underline{\mathbf{i}} 2xz \, \underline{\mathbf{j}} + 2yz \, \underline{\mathbf{k}}$, show that $\underline{\nabla} \times (\underline{\nabla} \times \underline{\mathbf{F}}) = -\nabla^2 \underline{\mathbf{F}} + \underline{\nabla} (\underline{\nabla} \cdot \underline{\mathbf{F}})$, where $\nabla^2 (F_1 \, \underline{\mathbf{i}} + F_2 \, \underline{\mathbf{j}} + F_3 \, \underline{\mathbf{k}}) \equiv (\nabla^2 F_1) \, \underline{\mathbf{i}} + (\nabla^2 F_2) \, \underline{\mathbf{j}} + (\nabla^2 F_3) \, \underline{\mathbf{k}}$.
- 9. Prove that $\nabla^2 f(r) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$. Hence show that $f(r) = A + Br^{-1}$, where A and B are arbitrary constants, satisfies $\nabla^2 f = 0$.

ANSWERS

- 1. 376/7.
- 2. (i) $\underline{\mathbf{j}}$, (ii) $3(x^2\underline{\mathbf{i}} + y^2\underline{\mathbf{j}} + z^2\underline{\mathbf{k}})$, (iii) $\underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}}$, (iv) $nr^{n-2}\underline{\mathbf{r}}$.
- 3. -2x + y + 3z = 1.
- 4. —
- 5. $4(\underline{\mathbf{a}} \cdot \underline{\mathbf{r}})$ and $\underline{\mathbf{a}} \times \underline{\mathbf{r}}$.
- 6. (i) $\underline{0}$, (ii) $-\underline{\mathbf{k}}$, (iii) $\underline{0}$, (iv) $\underline{0}$, (v) $(x+y)^{-1}\underline{\mathbf{k}}$.
- 7. —
- 8. 2(x+1)**j**.
- 9. —