This sheet can be found on the Web: http://www.ma.ic.ac.uk/~ajm8/MEng26

1. Find the Fourier series of the function f(x) where

$$f(x) = 0$$
 for $-\pi < x < 0$ and $f(x) = 1$ for $0 < x < \pi$.

What is the value of the series at x = 0, where f(x) is discontinuous?

{Answer: $f(x) = \frac{1}{2} + \frac{2}{\pi} \sum_{\text{n odd}} \sin nx/n$ }

2. Show that if $-\pi < x < \pi$,

$$x^{2} = \frac{1}{3}\pi^{2} + 4\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos nx$$
,

By differentiating this series, infer the Fourier series of x in the same interval. By integrating the series, and using the series for x you have just found, find a similar series for x^3 .

{Answer: $x^3 = \sum (-1)^n \left[\frac{12}{n^3} - \frac{2\pi^2}{n} \right] \sin nx$ }

3. Using Parseval's theorem for the series for x, x^2 and x^3 calculated in question 2, show that

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
, (b) $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$, (c) $\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$.

4. Consider the 2L-periodic "square pulse" function f(x)=1 for $0 \le |x| < 1$, f(x)=0 for 1 < |x| < L. Calculate the Fourier coefficients a_n . Defining $k_n = n\pi/L$, and $F_n = La_n$, show that $F_n = 2\sin k_n/k_n$.

Now let $L \to \infty$ and define F(k), the **Fourier Transform** of f(x), by

$$F(k) = \int_{-\infty}^{\infty} e^{-ikx} f(x) dx .$$

Show that $F(k) = 2\sin k/k$.

[This illustrates the connection between Fourier Series and Fourier Transforms.]