This sheet can be found on the Web: http://www.ma.ic.ac.uk/~ajm8/MEng26

1. Find all vectors $\underline{\mathbf{x}}$ which obey the differential equation

$$\frac{d\mathbf{\underline{x}}}{dt} = \begin{pmatrix} 1 & -1 & 0\\ 1 & 2 & 1\\ -2 & 1 & -1 \end{pmatrix} \mathbf{\underline{x}} ,$$

in terms of the eigenvalues and eigenvectors of the matrix.

At t = 0, $\underline{\mathbf{x}} = (1, 2, -7)^T$. Find x(t) and describe what happens to $\underline{\mathbf{x}}$ as $t \to \infty$.

{Answer: $\underline{\mathbf{x}} = e^{-t}(1, 2, -7)^T$ }

[For later: Would a computer get this right? What is the effect of small rounding errors?]

2. The vector $\underline{\mathbf{x}}$ satisfies the differential equation

$$t\frac{d\mathbf{x}}{dt} = A\mathbf{x}$$
 for a constant matrix A .

Show that there exist solutions of the form $\underline{\mathbf{x}} = t^{\lambda}\underline{\mathbf{a}}$, where λ is a constant and $\underline{\mathbf{a}}$ is a constant vector, provided $A\underline{\mathbf{a}} = \lambda \underline{\mathbf{a}}$.

Use this technique to solve the problem

$$t\frac{d\underline{\mathbf{x}}}{dt} = \begin{pmatrix} 5 & -1\\ 3 & 1 \end{pmatrix} \underline{\mathbf{x}} .$$

{Answer: $\underline{\mathbf{x}} = c_1 t^2 (1,3)^T + c_2 t^4 (1,1)^T$ }

3. Writing ' for d/dt, show that the scalar equation

$$y''' + 5y'' + 6y' = 0$$

can be written in the form $\underline{\mathbf{x}}' = A\underline{\mathbf{x}}$, for a suitable 2×2 matrix A and vector $\underline{\mathbf{x}}$. Calculate the eigenvalues and eigenvectors of A, and hence find y(t) when y(0) = 2, y'(0) = -2 and y''(0) = 4.

{Answer: $y = 1 + e^{-2t}$ }

4. Three equal masses are connected in a straight line to two fixed points using 4 identical springs. The masses can move normal to the springs with displacements x_1 , x_2 and x_3 . Writing $\underline{\mathbf{x}} = (x_1, x_2, x_3)^T$, the equation which governs the vibration of the system is, in suitable units,

$$\frac{d^2\underline{\mathbf{x}}}{dt^2} + A\underline{\mathbf{x}} = 0 \quad \text{where} \quad A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$

Show that a possible mode of vibration is $(x_1, x_2, x_3) = (1, 0, -1) e^{i\omega t}$, and show that $\omega = \sqrt{2}$. Find the other two frequencies and corresponding eigenvectors.

{Answer: $\omega = (2 \pm \sqrt{2})^{1/2}$, eigenvectors $(1, \mp \sqrt{2}, 1)^T$.}