This sheet can be found on the Web: http://www.ma.ic.ac.uk/~ajm8/MEng26

1. On the grid (nh, jk), for integers n and j, derive the finite difference scheme

$$U_n^{j+1} = rU_{n-1}^j + (1-2r)U_n^j + rU_{n+1}^j$$
, where $r = Dk/h^2$,

for the heat equation for u(x, t),

$$u_t = Du_{xx}$$
 with $u(x,0) = e^{ipx}$

for some constants D and p. [We take u(x, t) to be complex for simplicity.] Look for a solution

$$U_n^j = (\lambda)^j e^{in\xi}$$
 where $\xi = ph$

and show that such a solution exists provided

$$\lambda = 1 - 2r(1 - \cos \xi) \ .$$

By considering $\xi = \pi$, show that it is possible for $|\lambda| > 1$ if $r > \frac{1}{2}$. How does the solution U_n^j behave as $j \to \infty$ in that case?

2. The truncation error of the Crank-Nicolson scheme for the equation $u_t = u_{xx}$ is defined by

$$E_n^j = \frac{U_n^{j+1} - U_n^j}{k} - \left(\frac{U_{n-1}^j - 2U_n^j + U_{n+1}^j}{2h^2}\right) - \left(\frac{U_{n-1}^{j+1} - 2U_n^{j+1} + U_{n+1}^{j+1}}{2h^2}\right) .$$

Show that $E_n^j = O(k^2, h^2)$.

3. The function u(x, y) obeys Laplace's equation in a rectangle

$$u_{xx} + u_{yy} = 0$$
 in $0 < x < 1$, $0 < y < 2$,

with the boundary conditions

$$u(0, y) = 0$$
, $u(1, y) = 4$, $u(x, 0) = 0$, and $u(x, 2) = 4$.

Formulate a numerical scheme to solve this problem on a square grid of size h where Nh = 1, writing the equations in the form $A\mathbf{v} = \mathbf{b}$. Define the matrix A, the unknown vector \mathbf{v} and the known vector \mathbf{b} precisely.

When $h = \frac{1}{2}$, obtain three simultaneous equations in the unknowns $v_1 = u(h, h)$, $v_2 = u(h, 2h)$ and $v_3 = u(h, 3h)$.

Set up the Jacobi and Gauss-Seidel iterative schemes to solve this problem and perform two iterations of each method. Which method seems to be converging faster?