M.Eng. 2.6 Mathematics: Trapezium and Runge-Kutta methods.
This sheet can be found on the Web: http://www.ma.ic.ac.uk/~ajm8/MEng26

Euler’s method is simple to use, but is not particularly accurate. Thus to keep our error
satisfactorily low we may have to choose a very small value of h. Let’s see if we can find
a more accurate method which involves only a little more calculation.

An obvious generalisation of Euler’s method is

Ynt1 = Yn + h[clf(l’n, Yn) + c2f(Tnt1, yn+1)] ;

where ¢y and ¢y are constants which we can choose. In Euler’s method ¢; = 1 and ¢y = 0.
We define the local error or truncation error, F,, at the point z = x,, to be the
amount by which the exact solution fails to satisfy our approximate equation, so that
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since y' = f(z, y). We now expand y(z,41) and y'(z,4+1) as Taylor series, recalling that

En ) —ylan) — h[clf(l’na y(zn)) + c2f(@nt1, y(l’n+1)]

) = y(zn) = hlery'(zn) + 29/ (2ng1)]
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Tpt1 = Ty + h, so that

E, =y(xn) + hy'(zn) + %hzy”(:z:n) + %h?’y”’(xn) +...
—y(zn) — hery'(zn)
— hes [y’(scn) + hy"(2n) + %th/"(:z:n) + .. ]
=[1—c1 —ea)hy'(zn) + [% — CQ] Ry (zn) + [é — %cz] R¥y" (20) + ...

We see therefore that for ¢; = 1, ¢; = 0 (Euler’s method) E, = +h%y"(z,)+0(h*). Euler’s
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method is first order. However, if ¢c; = % and ¢; = % then F, = —11—2h3y’”(:z;n) + O(h*).

This more accurate, second order method is known as The Trapezium Method:

Ynt1 — Yn = sh[f(n, Yn) + F(@nt1s Ynt1)] - (1)

Let’s try this on the same numerical example we used before:
y' = 2xy with y(0) =1 using h = i . (2)
We have 29 =0, yo = 1, 1 = i and f(z, y) = 2zy. Using (1) with n =0,

Y1 — Yo = 1 [2z0y0 + 2x1y1 | or y1—1=¢[0+ 1],
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giving y1 = 73. Now put n = 1 in (1), to obtain
v =15 =5 2(3) (53) +2(3) w2]
136

giving y» = 752 ~ 1.295. Now the exact solution to (2) is y = er, so that y(zy) = €°2° ~

1.284. Euler’s method gave the result y, = % ~ 1.125 which is clearly less accurate.

ot

1



Unfortunately, the Trapezium method suffers from a severe disadvantage, namely that
it is an implicit method. It cannot be written in the form y,+; =(something calculable).
You may have noticed that we had to solve an equation to find the value of y,, 41 given y,,.
This wasn’t so bad for a linear problem, but consider, say,

y =y with y(0) =1 using h=1.

Applying the Trapezium method to this problem gives for the first step,
y1=yo+%[yé°+y}°} or y}0—2y1—|-3:0_

The value of y; is given implicitly by this equation. We still have work to do to find it,
and there may be more than one solution or, as in this case, no solution! Despite being
second order, the method is not so straightforward to implement.

Second Order Runge-Kutta methods:

There is a large family of methods which, while having an O(%h?) local error, are
nevertheless explicit. The basic idea is first to use Euler’s method (or similar) to provide
a first estimate of the solution at some other point, and then to use this estimate to obtain
an improved version. For this course you need only meet the two most popular methods

below:
y::+1 =Yn + hf(i’fna yn)
Yn+1 = Yn + %h[f(xrm Yn) + f(Tnt1, y;+1)}

(3)
and

y;—l—l = Yn ‘|‘ %hf(fcna yn) } (4)

Ynt+1 = Yn + hf(zn + %ha Ynt1)

In these methods y; is not part of the solution and merely calculated on the way. In (3),
Ynyq1 1 an approximation to y,41 obtained by Euler’s method, which is then used in an
approximate Trapezium method. In (4), y*_ ; is an approximation to y(z,+3h). Convince
yourself that these two methods are explicit i.e. y,41 follows by direct calculation from

Yn-
These two methods are shown to be second order on Problem Sheet 2, along with a

few examples and a simple PASCAL program. There exist more complicated Runge-Kutta
methods of higher accuracy, but we will not discuss those here.



