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Schrödinger Operators on the Half-line
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Abstract. We derive a sharp bound on the location of non-positive eigenvalues
of Schrödinger operators on the half-line with complex-valued potentials.
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1. Introduction and main result

In this note we are concerned with estimates for non-positive eigenvalues of one-
dimensional Schrödinger operators with complex-valued potentials. We shall pro-
vide an example of a bound where the sharp constant worsens when a Dirichlet
boundary condition is imposed. This is in contrast to the case of real-valued po-
tentials, where the variational principle implies that the absolute value of the
non-positive eigenvalues decreases.

In order to describe our result, we first assume that V is real-valued. It is a
well-known fact (attributed to L. Spruch in [K]) that any negative eigenvalue λ of
the Schrödinger operator −∂2 − V in L2(R) satisfies

|λ|1/2 ≤ 1
2

∫ ∞

−∞
|V (x)| dx . (1.1)

The constant 1
2 in this inequality is sharp and attained if V (x) = cδ(x − b) for

any c > 0 and b ∈ R. (It follows from the Sobolev embedding theorem that the
operator −∂2−V can be defined in the quadratic form sense as long as V is a finite
Borel measure on R. In this case the right side of (1.1) denotes the total variation
of the measure.) From (1.1) and the variational principle for self-adjoint operators
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we immediately infer that any negative eigenvalue of the operator −∂2 − V in
L2(0,∞) with Dirichlet boundary conditions satisfies

|λ|1/2 ≤ 1
2

∫ ∞

0
|V (x)| dx . (1.2)

The constant 1
2 in this inequality is still sharp but no longer attained.

Motivated by concrete physical examples and problems in computational
mathematics, an increasing interest in eigenvalue estimates for complex-valued po-
tentials has developed in recent years. A beautiful observation of [AAD] is that
(1.1) remains valid for all eigenvalues in C \ [0,∞) even if V is complex-valued.
The same is not true for (1.2) ! Indeed, our main result is

Theorem 1.1. For a ∈ R let

g(a) := sup
y≥0

∣∣ eiay − e−y
∣∣ . (1.3)

Any eigenvalue λ = |λ|eiθ ∈ C \ [0,∞) of the operator −∂2 − V in L2(0,∞) with
Dirichlet boundary conditions satisfies

|λ|1/2 ≤ 1
2

g(cot(θ/2))
∫ ∞

0
|V (x)| dx . (1.4)

This bound is sharp in the following sense: For any given m > 0 and θ ∈ (0, 2π)
there are c ∈ C and b > 0 such that for V (x) = cδ(x−b) one has |c| =

∫
|V (x)| dx =

m and the unique eigenvalue of −∂2 − V is given by (m2/4) g(cot(θ/2))2eiθ, that
is, equality is attained in (1.4).

Remark 1.2. Our bound does not apply to positive eigenvalues. In the case of real-
valued potential it is known that there are no positive eigenvalues if V ∈ L1(R).

We note that 1 < g(a) < 2 for a > 0. The following lemma discusses the
function g in more detail.

Lemma 1.3. For a ≥ 0, the function g(a) is monotone increasing, with g(0) = 1
and lima→∞ g(a) = 2. Moreover,

g(a) = 1 + O( e−π/(3a) ) (1.5)

for small a, and

g(a) = 2 − π

a
+ O(a−2) (1.6)

as a → ∞.

In Figure 1 we plot the curve {|z| = g(cot(θ/2))2}. It follows from (1.6) that
this curve hits the positive real axis at the point 4 with slope 2/π. Close to the
point −1 the curve coincides with a semi-circle up to exponentially small terms,
as (1.5) shows.
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Figure 1. The maximal value of 4|λ| on the half-line with∫ ∞
0 |V (x)| dx = 1. The dashed line is the corre-

sponding bound on the whole line.

Using that supa g(a) = 2 we find

Corollary 1.4. Any eigenvalue λ ∈ C \ [0,∞) of the operator −∂2 −V in L2(0,∞)
with Dirichlet boundary conditions satisfies

|λ|1/2 ≤
∫ ∞

0
|V (x)| dx . (1.7)

The bound is not true in general if the right side is multiplied by a constant < 1.

Inequality (1.7) follows also from inequality (1.1) for complex-valued poten-
tials. Indeed, the odd extension of an eigenfunction of the Dirichlet operator is an
eigenfunction of the whole-line operator with the potential V (|x|) with the same
eigenvalue. The remarkable fact is that the inequality is sharp in the complex-
valued case, as shown in Theorem 1.1.

By the same argument (1.7) is also valid if Neumann instead of Dirichlet
boundary conditions are imposed. In this case equality holds for any V (x) = cδ(x)
with Re c > 0. In particular, in the Neumann case (1.7) is sharp for any fixed
argument 0 < θ < 2π of the eigenvalue λ. The analogue for mixed boundary
conditions is

Proposition 1.5. Let σ ≥ 0. Any eigenvalue λ ∈ C\ [0,∞) of the operator −∂2−V
in L2(0,∞) with boundary conditions ψ′(0) = σψ(0) satisfies

|λ|1/2 ≤
∫ ∞

0
|V (x)| dx . (1.8)

The bound is sharp for any σ ≥ 0 and any fixed argument 0 < θ < 2π of the
eigenvalue λ.

Note that if σ < 0 a bound of the form (1.8) can not hold since there exists
a non-positive eigenvalue even in the case V = 0.
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Remark 1.6. In the self-adjoint case inequality (1.1) for whole-line operators is
accompanied by bounds

|λ|γ ≤ Γ(γ + 1)√
π Γ(γ + 3/2)

(
γ − 1/2
γ + 1/2

)γ−1/2 ∫ ∞

−∞
|V (x)|γ+1/2 dx (1.9)

for γ > 1/2; see [K, LT]. In contrast, in the non-selfadjoint case it seems to be
unknown whether the condition V ∈ Lγ+1/2(R) for some 1/2 < γ < ∞ implies
that all eigenvalues in C \ [0,∞) lie inside a finite disc; see [DN, FLLS, LS, S] for
partial results in this direction. We would like to remark here that even if a bound
of the form (1.9) were true in the non-selfadjoint case with 1/2 < γ < ∞, then (in
contrast to (1.1) for γ = 1/2) the constant would have to be strictly larger than
in the self-adjoint case. To see this, consider V (x) = α(α+1)

cosh2 x
with Re α > 0. Then

λ = −α2 is an eigenvalue (with eigenfunction (coshx)−α) and the supremum

sup
Re α≥0

|λ|γ∫ ∞
−∞ |V (x)|γ+1/2 dx

=
(∫ ∞

−∞

dx

cosh2 x

)−1

sup
Re α≥0

|α|γ−1/2

|α + 1|γ+1/2

is clearly attained for purely imaginary values of α.

2. Proofs

Proof of Theorem 1.1. Assume that −∂2ψ(x) − V (x)ψ(x) = −µψ(x) with ψ(0) =
0, ψ (≡ 0 and µ = −λ ∈ C \ (−∞, 0]. Then the Birman-Schwinger operator

V 1/2 1
−∂2 + µ

|V |1/2 , V 1/2 := (sgnV )|V |1/2 ,

has an eigenvalue 1, and hence its operator norm is greater or equal to 1.
The integral kernel of this operator equals

V (x)1/2 e−
√

µ|x−y| − e−
√

µ(x+y)

2√µ
|V (y)|1/2 ,

and hence
∣∣∣∣

(
ψ , V 1/2 1

−∂2 + µ
|V |1/2 ϕ

)∣∣∣∣ ≤
‖V ‖1

2
√
|µ|

‖ψ‖2‖ϕ‖2 sup
x,y≥0

∣∣∣ e−
√

µ|x−y| − e−
√

µ(x+y)
∣∣∣ .

Without loss of generality, we can take the supremum over the smaller set x ≥
y ≥ 0. Then

sup
x≥y≥0

∣∣∣ e−
√

µ(x−y) − e−
√

µ(x+y)
∣∣∣ = sup

x≥y≥0
e−xRe

√
µ

∣∣∣ e
√

µy − e−
√

µy
∣∣∣ .

Since Re√µ > 0, the supremum over x is achieved at x = y, and hence

sup
x,y≥0

∣∣∣ e−
√

µ(x−y) − e−
√

µ(x+y)
∣∣∣ = sup

y≥0

∣∣∣1 − e−2
√

µy
∣∣∣ .
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If we write µ = −|µ| eiθ with 0 < θ < 2π, then

sup
y≥0

∣∣∣1 − e−2
√

µy
∣∣∣ = sup

y≥0

∣∣∣ e2i
√

|µ| cos(θ/2)y − e−2
√

|µ| sin(θ/2)y
∣∣∣ = g(cot(θ/2))

with g from (1.3). Hence we have shown that
∥∥∥∥V 1/2 1

−∂2 + µ
|V |1/2

∥∥∥∥ ≤ ‖V ‖1

2
√
|µ|

g(cot(θ/2)) . (2.1)

Since the left side is greater or equal to 1, as remarked above, we obtain (1.4).
For V (x) = cδ(x− b) the Birman-Schwinger operator reduces to the number

c(1− e−2
√

µb)/(2√µ) and inequality (2.1) becomes equality provided √
µb satisfies

|1− e−2
√

µb| = g(cot(θ/2)). For given m > 0 and θ ∈ (0, 2π) this determines b and
|c|. The phase of c is found from the equation c(1 − e−2

√
µb)/(2√µ) = 1. !

Proof of Lemma 1.3. By continuity for a > 0 there exists an optimizer y0 such that
g(a) = | eiay0 − e−y0 |. We claim that y0 satisfies π/3 < ay0 ≤ π. To see the lower
bound, note that | eiay − e−y | ≥ 1 if and only if 2 cos(ay) ≤ e−y . In particular,
cos(ay0) < 1/2. For the upper bound, if 2π > ay > π and 2 cos(ay) < e−y ,
replacing ya by 2π − ya leads to a contradiction. Similarly, if ya > 2π it can
replaced by ya − 2π in order exclude that y is the optimizer.

It is elementary to check that | eiay − e−y | is monotone increasing in a for
every fixed y with 0 ≤ y ≤ π/a. Since we know already that y0 ≤ π/a, the
monotonicity of g follows.

Plugging in y = π/a, we obtain g(a) ≥ 1+ e−π/a ≥ 2−π/a. For large enough
a, it follows from this that y0 is close to π/a. In particular, y0 ≥ π/(2a), and hence
| eiay0 − 1| ≥ g(a) ≥ 2 − π/a. This implies that y0 = π/a + O(a−2), and thus
g(a) = 2 − π/a + O(a−2), as claimed.

For an upper bound for small a, we use the triangle inequality and the bound
ay0 ≥ π/3 to find g(a) ≤ 1 + e−y0 ≤ 1 + e−π/(3a) . !

Proof of Proposition 1.5. We proceed as in the proof of Theorem 1.1. The Birman-
Schwinger operator has the kernel

V (x)1/2
e−

√
µ|x−y| +

√
µ−σ√
µ+σ e−

√
µ(x+y)

2√µ
|V (y)|1/2 .

The assertion follows as above using that

sup
y≥0

∣∣∣∣1 +
√

µ − σ
√

µ + σ
e−2

√
µy

∣∣∣∣ ≤ 2

by the triangle inequality and the fact that |√µ−σ| ≤ |√µ+σ|. The fact that the
bound (1.8) is sharp for given argument 0 < θ < 2π of the eigenvalue λ follows by
choosing V (x) = −ci eiθ/2 δ(x) for c > 0 and letting c → ∞. !
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