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ABSTRACT. The aim of this short note is to obtain a sharp Hardy in-
equality for convex domains involving both the distance to the boundary
and the distance to the origin. In particular this would imply a Hardy-
Sobolev inequality for the class of symmetric functions in a ball.
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0. INTRODUCTION

The classical Hardy inequality states that if d > 3 then for any function
u such that Vu € L?(R9)

(1) (%)2 /Rd “ﬁgp dz < /Rd Vu(z)|? dz.

The constant ((d —2)/2)? in (1) is sharp but it is not achieved.

Hardy’s inequality for convex domains in R? is usually given in terms of the
distance to the boundary. Namely, let © C R? be a convex domain and let
d(z) = dist (z,012) be the distance from z € €2 to the boundary 992. The
following Hardy inequality is well known (see [5], [6])

1 [ |u(@)? |
(2) / \Vul|? dz > ~ dz, u € Hy(Q).
o VT o) °
In this case the equality is also not achieved. This gives room for various
improvements of the later inequality. It has been shown by H. Bresis and
M. Markus in [4] that

u(z)[?
/Q\Vulzda: > % A |52((;|) dx + \(2) /Qu(x)de, u € HYH (D),

where
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In [11] M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof and A. Laptev es-
timated this constant by the Lebesgue measure of 2

Q) > ([;;‘)2/ !

where v4 is the volume of unit ball.

F. Avkhadiev [1], [2] and S. Filippas, V. Maz’ya and A. Tertikas [8] have
proved that

A(Q) > 3D;2(Q),

int
where Din () = 2sup{d(z) : = € Q} is the interior diameter of .
Recently F. Avkhadiev and K.-J. Wirths [3] have proved that A(2) >
4N D, 2(Q), where \g = 0.940... is defined as the first positive root of the
equation Jo(A) 4+2AJy(A) = 0 for Bessel’s function and this constant is sharp
for all dimensions.

The main purpose of this short article is to prove the following result which
is a certain generalisation of Theorem 3.2 [9]:

Theorem 1. Let Q@ C R%, d > 1, be a bounded domain and let B, ={z:
|z| < p} C Q. For x € Q\ B, denote by 0,(x) = dist (x,0B,) = |z| — p and
6q = dist (x,09). Then for any u € H}(Q\ B)

/ \Vu(z)|? de
O\B,

1 d-1)d-3) 1 1
>4/Q\B,J( R 20 " R

P
Adg(z) ) x- V() 2 Voa(@)\ e g
So(z) 2|33|5p(x)59(:13) |z[2d0() )| (@) de-

-2

+2(d—1)

This result implies several corollaries which have some independent interest.

Corollary 1. Let @ = Br = {z : |z| < R}, R > p, and let 0p = 0q =
dist (z,0Br) = R — |z|. Then for any u € H}(Q\ B,)

/ |Vu(z)|? de
Br\B,

1 d-1)d-3) 1 1 2 )
1 /BR\B,, o tam TR aeme) Mol e

Proof. This statement follows from Theorem 1, since

fAdR(LU)_ d—1 o .. I
Sp(z)  |z|oR(x) d Vig(z) |z].
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Remark 1. In particular, if R — oo, then Corollary 1 provides us with the
Hardy inequality for exterior of the ball B,

2 1 (d—1)(d-3) L o2 d
/Rd\Bp Vu(@)|*de > 7 /Rd\Bp( o] +52(x>)| (z)]2 da.

p

Remark 2. It has been noticed in [7] that the inequality (2) holds for
a not necessary convex conical sector Q = Q, C R? of angle a« < 7w +
4arctan(41'2(3/4)I'=2(1/4)), whereas Corollary 1 shows that (2) is also true
for Q = Bg \ B,. It would be interesting to describe a class of non-convex
domains for which (2) remains true.

If we let p — 0, then using (d — 1)(d — 3) + 1 = (d — 2)? we find
Corollary 2.

L[ (A= 1 2 :
/BR\V (o) do > /BR( e tEm ‘$|6R(x))|u(3:)] da,
where u € HY(BR) if d > 2 and uw € H}(Bg \ {0}) ifd = 1.

Remark 3. Note that the latter inequality without the extra positive term
2/(|z|0g(x)) follows from Theorem 3.2 [9]. Note that both constants at the
first two terms in the right hand side of this inequality are sharp.

If we now assume that —Adg(z) + (d —2) 2 - Vg (z)/|z|> > 0 and p = 0 we
recover Theorem 3.2 [9].

Corollary 3. Let Q € R%, d > 1, be a bounded domain and let B, = {z:
|z| < p} C Q and let us assume that —Adq(x) + (d —2) x - Viq(x)/|x|? > 0.
Then for any u € HE(Q\ {0}) we have

2 1 (d_2)2 L u(z)|? dz
‘A&Nmmme44mj|w + ) MR

Corollary 4. Let Q2 be a bounded convexr domain and let us assume that the
origin is chosen such that max {0q(z) : x € Q} is achieved at 0. Suppose
also that B, C Q C {z : (d —2)|z| < (d —1)p}, d > 2. Then for any
ue Hy(Q\ B,)

1 (d—l)(d—3) 1
Vu(z)]?de > = / 2da:

Proof. Lemma 3 implies that for convex domams A(Sg(:p) < 0. By using

Lemma 2 we find that z - Vg < 0. Besides if (d — 2)|z| < (d — ),0 then
2 _2(d-1)
dp(x)da(x) — |2|da(z)

and we obtain the statement. O
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Remark 4. In particular, if d = 2, then for any conver domain satisfying
properties of Corollary 4 we have

2 1 1 1 (2 d
fo, et [ (o = e + ) 1o

and if p — 0, then we recover (2).

It has been noticed in the recent paper of R. Frank and R. Seiringer [10]
(see Lemma 4.3) that for any non-negative symmetric decreasing function u
in R?

2
Q fulfp =" [ a,

¢ |zf?

where ||u||2+ 2 is the Lorentz norm and 2* = 2d/(d — 2). Combining (3) with
Corollary 2 we obtain

Theorem 2. Let B = {r € R? : |z| < R}, d > 3 and dr(z) = R — |z|
be the distance from x to the boundary 0Br. Then for any non-negative
symmetric decreasing function u € H (Bg) we have

1 u?(x) 2/d ((d—2)\2
295 & 2
@ [ Nuolezy [ Giaes ! (550) g

Using that

d

-2
el < == lull3- »,

(see [10]) and (4) we obtain the following Hardy-Sobolev inequality with
constants which are independent of the radius of the ball.

Corollary 5. Under the assumptions of Theorem 2

2
2% | -

1 u?(x) 2/d
Vu(z)]?de > = de +d(d—2)v U
[ 1vuaez [ [ G e =2

1. SOME AUXILIARY RESULTS

We begin with a statement which is a simple corollary of the Cauchy-
Schwarz inequality and partial integration. Different versions of this state-
ment could be found for example in [11] and [12].

Lemma 1. Let Q C R? and let F(x) be a vector field x € Q. Then assuming
that F(z) and div F(x) are finite for x € supp u we obtain

1 iv F(z) — |F(@))?) |u(z)]? de ul?dz, wu 5°
6) 5 [ (2avF@) - 1F@P) e < [ [Vude. we cF@)
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Proof. Indeed
2 2
(/div]—"(m)\u( P dr)” /f (@)P) dr)
Q
§4/ \Vu]de/ P (@) Rlu()]? da.
Q Q

Then it only remains to notice that

1

1 /Q (2divf(:z:) — |f(x)|2> |U(x)|2dz

_1 (ot F@u(r) ) /\vquda;
4 o |F(@)Plulx) |2dl’

O

We now prove a simple geometrical lemma which is valid for bounded convex
domains.

Lemma 2. Let Q C R? be a convex bounded domain with C* boundary.
Then the value of the interior radius Riny = sup {0q(z) : x € Q} is achieved
at some point xy € Q and for any x € §2

(6) Vioq(z) - (z — z) < 0.

Proof. The function dg : © — R, defined on the compact set (2 is continu-
ous. Thus Rj, is achieved at some xg € ().
Let us now consider sets 2., 0 < r < Rjy¢ such that

Q, ={zeQ: dq(x)>r}.

Domains €2, are convex and obviously zg € €, for 0 < r < Rjyt. Then for
any = € 0L, the vector —Vdq(x) is the unit outer normal to 92, at z. Then
obviously —Vdq(z) - (x — zp) > 0 which completes the proof. O

Remark 5. The statement of Lemma 2 remains true for an arbitrary bounded
conver domain. In this case at points where Voq(x) is not uniquely defined,
one should consider in (6) a normal to any of the supporting hyperplanes to
Q, at x € 09,

The next result concerning the Laplacian of the distance function for convex
domain is well known.

Lemma 3. Let Q@ C R%, d > 2, be a convex domain and let 5q be the
distance function to its boundary. Then —A dq(z) is a positive measure.

Proof. Let yog € Q and assume that Viq(yo) exists. Consider an orthornor-
mal system of coordinates {yi,¥2,...,y4—1} in the hyperplane defined by
yo € Q and by —Viq(y). In these coordinates the boundary 0€2 could be rep-
resented by a concave function from the class Lip;. Note that 9,,00(yo) = 0,
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where y,4 is the coordinate along Viq(y). Using the fact that the Laplacian
A is invariant under rotations and parallel transport we therefore obtain
that Adq(yo) < 0. O

2. PROOF OF THE MAIN RESULT

Let
2) = (d—1z  Viy(z) Via(z)
TEZTRET T ) e
Then using that |Vi,(z)| = |Viq(x)| = 1 we obtain
: _(d=1)(d—-2) 1 1 (d-1) Adg(z)
O =T B T B@ @) dal)
and since Vi,(x) = z/|z|
12
® F@f =t g
(d—1) (d— 1)z - Vig(z) z - Vig(x)

TPls,@) 0T el T Tl @)aln)

Substituting (7) and (8) into the left hand side of (5) we complete the proof
of Theorem 1.

Acknowledgments. The authors acknowledge a partial support by the
SPECT ESF European programme. F.G. Avkhadiev was supported by the
Russian Foundation for Basic Research (project no. 08-01-00381) and by
the Goran Gustafssons Stiftelse in Sweden.

REFERENCES

[1] F. G. Avkhadiev, Hardy Type Inequalities in Higher Dimensions with Explicit
Estimate of Constants, Lobachevskii J. Math. 21 (2006), 3-31 (electronic,
http://ljm.ksu.ru).

[2] F. G. Avkhadiev, Hardy-type inequalities on planar and spatial open sets, Pro-
ceeding of the Steklov Institute of Mathematics 255 (2006), no.1, 2-12 (trans-
lated from Trudy Matem. Inst. V.A. Steklova, 2006, v.255, 8-18).

[3] F. G. Avkhadiev, K.-J. Wirths, Unified Poincaré and Hardy inequalities with
sharp constants for conver domains, Z. Angew. Math. Mech. 87 (2007), 632—
642.

[4] H.Brezis and M. Marcus, Hardy’s inequalities revisited. Dedicated to Ennio De
Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2 (1998),
217-237.

[5] E.B.Davies, Spectral theory and differential operators. Cambridge Studies in
Advanced Mathematics, 42. Cambridge University Press, Cambridge, 1995.
x+182 pp.

[6] E. B. Davies, A Review of Hardy inequalities, The Maz’ya anniversary Collec-
tion. Vol. 2. Oper. Theory Adv. Appl. 110 (1999), 55-67.

[7] E. B. Davies, The Hardy constant, Quart.J.math. Oxford (2) 46 (1995), 417—
431.



ON A SHARP HARDY INEQUALITY FOR CONVEX DOMAINS 7

[8] S. Fillippas, V. Maz’ya, A. Tertikas, Sharp Hardy-Sobolev Inequalities , C. R.
Acad. Sci. Paris 339 (2004),no. 7, 483-486.

[9] S. Fillippas, L. Moschini, A. Tertikas, Sharp twosided heat kernel estimates for
critical Schrédinger operators on bounded domains , Commun. Math. Phys.
273 (2007), 237281.

[10] R.L. Frank and R.Seiringer, Non-linear ground state representations and sharp
Hardy inequalities. arXiv:0803.0503v1 [math.AP] 4 Mar 2008.

[11] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and A. Laptev, A geometrical
version of Hardy’s inequalities, J. Funct. Anal. 189 (2002), no 2, 539-548.

[12] M.Hoffmann-Ostenhof, Th.Hoffmann-Ostenhof, A.Laptev and J.Tidblom,
Many Particle Hardy Inequalities, accepted by JLMS.

F. G. AvKHADIEV: Chebotarev Research Institute, Kazan State University,
420008 Kazan, Russia. favhadiev@ksu.ru

A. LAPTEV: Department of Mathematics, Imperial College London, London
SW7 2AZ, UK, Royal Institute of Technology, 100 44 Stockholm, Sweden.
a.laptev@imperial.ac.uk



