
ON A SHARP HARDY INEQUALITY FOR CONVEX
DOMAINS

FARIT AVKHADIEV AND ARI LAPTEV

Abstract. The aim of this short note is to obtain a sharp Hardy in-
equality for convex domains involving both the distance to the boundary
and the distance to the origin. In particular this would imply a Hardy-
Sobolev inequality for the class of symmetric functions in a ball.
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0. Introduction

The classical Hardy inequality states that if d ≥ 3 then for any function
u such that ∇u ∈ L2(Rd)

(1)
(d− 2

2

)2
∫

Rd

|u(x)|2

|x]2
dx ≤

∫
Rd
|∇u(x)|2 dx.

The constant ((d− 2)/2)2 in (1) is sharp but it is not achieved.

Hardy’s inequality for convex domains in Rd is usually given in terms of the
distance to the boundary. Namely, let Ω ⊂ Rd be a convex domain and let
δ(x) = dist (x, ∂Ω) be the distance from x ∈ Ω to the boundary ∂Ω. The
following Hardy inequality is well known (see [5], [6])

(2)
∫

Ω
|∇u|2 dx ≥ 1

4

∫
Ω

|u(x)|2

δ2(x)
dx, u ∈ H1

0 (Ω).

In this case the equality is also not achieved. This gives room for various
improvements of the later inequality. It has been shown by H. Bresis and
M. Markus in [4] that∫

Ω
|∇u|2 dx ≥ 1

4

∫
Ω

|u(x)|2

δ2(x)
dx+ λ(Ω)

∫
Ω
|u(x)|2 dx, u ∈ H1

0 (Ω),

where

λ(Ω) ≥ 1
4diam2(Ω)

.
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In [11] M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof and A. Laptev es-
timated this constant by the Lebesgue measure of Ω

λ(Ω) ≥ 3
4

( vd
|Ω|

)2/d
,

where vd is the volume of unit ball.
F. Avkhadiev [1], [2] and S. Filippas, V. Maz’ya and A. Tertikas [8] have
proved that

λ(Ω) ≥ 3D−2
int (Ω),

where Dint(Ω) = 2 sup {δ(x) : x ∈ Ω} is the interior diameter of Ω.
Recently F. Avkhadiev and K.-J. Wirths [3] have proved that λ(Ω) ≥
4λ0D

−2
int (Ω), where λ0 = 0.940... is defined as the first positive root of the

equation J0(λ)+2λJ
′
0(λ) = 0 for Bessel’s function and this constant is sharp

for all dimensions.

The main purpose of this short article is to prove the following result which
is a certain generalisation of Theorem 3.2 [9]:

Theorem 1. Let Ω ⊂ Rd, d ≥ 1, be a bounded domain and let Bρ = {x :
|x| ≤ ρ} ⊂ Ω. For x ∈ Ω \Bρ denote by δρ(x) = dist (x, ∂Bρ) = |x| − ρ and
δΩ = dist (x, ∂Ω). Then for any u ∈ H1

0 (Ω \Bρ)∫
Ω\Bρ

|∇u(x)|2 dx

≥ 1
4

∫
Ω\Bρ

((d− 1)(d− 3)
|x|2

+
1

δ2
ρ(x)

+
1

δ2
Ω(x)

− 2
∆δΩ(x)
δΩ(x)

− 2
x · ∇δΩ(x)
|x|δρ(x)δΩ(x)

+ 2(d− 1)
x · ∇δΩ(x)
|x|2δΩ(x)

)
|u(x)|2 dx.

This result implies several corollaries which have some independent interest.

Corollary 1. Let Ω = BR = {x : |x| < R}, R > ρ, and let δR = δΩ =
dist (x, ∂BR) = R− |x|. Then for any u ∈ H1

0 (Ω \Bρ)∫
BR\Bρ

|∇u(x)|2 dx

≥ 1
4

∫
BR\Bρ

((d− 1)(d− 3)
|x|2

+
1

δ2
ρ(x)

+
1

δ2
R(x)

+
2

δρ(x)δR(x)

)
|u(x)|2 dx.

Proof. This statement follows from Theorem 1, since

−∆δR(x)
δR(x)

=
d− 1
|x|δR(x)

and x · ∇δR(x) = −|x|.
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Remark 1. In particular, if R→∞, then Corollary 1 provides us with the
Hardy inequality for exterior of the ball Bρ∫

Rd\Bρ
|∇u(x)|2 dx ≥ 1

4

∫
Rd\Bρ

((d− 1)(d− 3)
|x|2

+
1

δ2
ρ(x)

)
|u(x)|2 dx.

Remark 2. It has been noticed in [7] that the inequality (2) holds for
a not necessary convex conical sector Ω = Ωα ⊂ R2 of angle α ≤ π +
4 arctan(4Γ2(3/4)Γ−2(1/4)), whereas Corollary 1 shows that (2) is also true
for Ω = BR \ Bρ. It would be interesting to describe a class of non-convex
domains for which (2) remains true.

If we let ρ→ 0, then using (d− 1)(d− 3) + 1 = (d− 2)2 we find

Corollary 2.∫
BR

|∇u(x)|2 dx ≥ 1
4

∫
BR

((d− 2)2

|x|2
+

1
δ2
R(x)

+
2

|x|δR(x)

)
|u(x)|2 dx,

where u ∈ H1
0 (BR) if d ≥ 2 and u ∈ H1

0 (BR \ {0}) if d = 1.

Remark 3. Note that the latter inequality without the extra positive term
2/(|x|δR(x)) follows from Theorem 3.2 [9]. Note that both constants at the
first two terms in the right hand side of this inequality are sharp.

If we now assume that −∆δΩ(x) + (d− 2)x · ∇δΩ(x)/|x|2 ≥ 0 and ρ = 0 we
recover Theorem 3.2 [9].

Corollary 3. Let Ω ⊂ Rd, d ≥ 1, be a bounded domain and let Bρ = {x :
|x| ≤ ρ} ⊂ Ω and let us assume that −∆δΩ(x) + (d− 2)x · ∇δΩ(x)/|x|2 ≥ 0.
Then for any u ∈ H1

0 (Ω \ {0}) we have∫
Ω\Bρ

|∇u(x)|2 dx ≥ 1
4

∫
Ω\Bρ

((d− 2)2

|x|2
+

1
δ2

Ω(x)

)
|u(x)|2 dx.

Corollary 4. Let Ω be a bounded convex domain and let us assume that the
origin is chosen such that max {δΩ(x) : x ∈ Ω} is achieved at 0. Suppose
also that Bρ ⊂ Ω ⊂ {x : (d − 2)|x| < (d − 1)ρ}, d ≥ 2. Then for any
u ∈ H1

0 (Ω \Bρ)∫
Ω\Bρ

|∇u(x)|2 dx ≥ 1
4

∫
Ω\Bρ

((d− 1)(d− 3)
|x|2

+
1

δ2
ρ(x)

+
1

δ2
Ω(x)

)
|u(x)|2 dx.

Proof. Lemma 3 implies that for convex domains ∆δΩ(x) ≤ 0. By using
Lemma 2 we find that x · ∇δΩ ≤ 0. Besides if (d− 2)|x| < (d− 1)ρ then

2
δρ(x)δΩ(x)

≥ 2(d− 1)
|x|δΩ(x)

and we obtain the statement. �
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Remark 4. In particular, if d = 2, then for any convex domain satisfying
properties of Corollary 4 we have∫

Ω\Bρ
|∇u(x)|2 dx ≥ 1

4

∫
Ω\Bρ

( 1
(|x| − ρ)2

− 1
|x|2

+
1

δ2
Ω(x)

)
|u(x)|2 dx

and if ρ→ 0, then we recover (2).

It has been noticed in the recent paper of R. Frank and R. Seiringer [10]
(see Lemma 4.3) that for any non-negative symmetric decreasing function u
in Rd

(3) ‖u‖22∗,2 = v
−2/d
d

∫
Rd

u2(x)
|x|2

dx,

where ‖u‖2∗,2 is the Lorentz norm and 2∗ = 2d/(d− 2). Combining (3) with
Corollary 2 we obtain

Theorem 2. Let BR = {x ∈ Rd : |x| < R}, d ≥ 3 and δR(x) = R − |x|
be the distance from x to the boundary ∂BR. Then for any non-negative
symmetric decreasing function u ∈ H1

0 (BR) we have

(4)
∫
BR

|∇u(x)|2 dx ≥ 1
4

∫
BR

u2(x)
δ2
R(x)

dx+ v
2/d
d

((d− 2)
2

)2
‖u‖22∗,2.

Using that

‖u‖22∗ ≤
d− 2
d
‖u‖22∗,2,

(see [10]) and (4) we obtain the following Hardy-Sobolev inequality with
constants which are independent of the radius of the ball.

Corollary 5. Under the assumptions of Theorem 2∫
BR

|∇u(x)|2 dx ≥ 1
4

[ ∫
BR

u2(x)
δ2
R(x)

dx+ d(d− 2) v2/d
d ‖u‖22∗

]
.

1. Some auxiliary results

We begin with a statement which is a simple corollary of the Cauchy-
Schwarz inequality and partial integration. Different versions of this state-
ment could be found for example in [11] and [12].

Lemma 1. Let Ω ⊂ Rd and let F(x) be a vector field x ∈ Ω. Then assuming
that F(x) and divF(x) are finite for x ∈ suppu we obtain

(5)
1
4

∫
Ω

(
2 divF(x)− |F(x)|2

)
|u(x)|2 dx ≤

∫
Ω
|∇u|2 dx, u ∈ C∞0 (Ω).
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Proof. Indeed(∫
Ω

divF(x)|u(x)|2 dx
)2

=
(∫

Ω
F(x) · ∇(|u(x)|2) dx

)2

≤ 4
∫

Ω
|∇u|2 dx

∫
Ω
|F(x)|2|u(x)|2 dx.

Then it only remains to notice that

1
4

∫
Ω

(
2divF(x)− |F(x)|2

)
|u(x)|2 dx

≤ 1
4

( ∫
Ω divF(x)|u(x)|2 dx

)2∫
Ω |F(x)|2|u(x)|2 dx

≤
∫

Ω
|∇u|2 dx.

�

We now prove a simple geometrical lemma which is valid for bounded convex
domains.

Lemma 2. Let Ω ⊂ Rd be a convex bounded domain with C1 boundary.
Then the value of the interior radius Rint = sup {δΩ(x) : x ∈ Ω} is achieved
at some point x0 ∈ Ω and for any x ∈ Ω

(6) ∇δΩ(x) · (x− x0) ≤ 0.

Proof. The function δΩ : Ω→ R+ defined on the compact set Ω is continu-
ous. Thus Rint is achieved at some x0 ∈ Ω.
Let us now consider sets Ωr, 0 < r < Rint such that

Ωr = {x ∈ Ω : δΩ(x) > r}.
Domains Ωr are convex and obviously x0 ∈ Ωr for 0 < r ≤ Rint. Then for
any x ∈ ∂Ωr the vector −∇δΩ(x) is the unit outer normal to ∂Ωr at x. Then
obviously −∇δΩ(x) · (x− x0) ≥ 0 which completes the proof. �

Remark 5. The statement of Lemma 2 remains true for an arbitrary bounded
convex domain. In this case at points where ∇δΩ(x) is not uniquely defined,
one should consider in (6) a normal to any of the supporting hyperplanes to
Ωr at x ∈ ∂Ωr.

The next result concerning the Laplacian of the distance function for convex
domain is well known.

Lemma 3. Let Ω ⊂ Rd, d ≥ 2, be a convex domain and let δΩ be the
distance function to its boundary. Then −∆ δΩ(x) is a positive measure.

Proof. Let y0 ∈ Ω and assume that ∇δΩ(y0) exists. Consider an orthornor-
mal system of coordinates {y1, y2, . . . , yd−1} in the hyperplane defined by
y0 ∈ Ω and by −∇δΩ(y). In these coordinates the boundary ∂Ω could be rep-
resented by a concave function from the class Lip1. Note that ∂ydδΩ(y0) = 0,
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where yd is the coordinate along ∇δΩ(y). Using the fact that the Laplacian
∆ is invariant under rotations and parallel transport we therefore obtain
that ∆δΩ(y0) ≤ 0. �

2. Proof of the main result

Let

F(x) =
(d− 1)x
|x|2

− ∇δρ(x)
δρ(x)

− ∇δΩ(x)
δΩ(x)

.

Then using that |∇δρ(x)| = |∇δΩ(x)| = 1 we obtain

(7) divF(x) =
(d− 1)(d− 2)

|x|2
+

1
δ2
ρ(x)

+
1

δ2
Ω(x)

− (d− 1)
|x|δρ(x)

− ∆δΩ(x)
δΩ(x)

.

and since ∇δρ(x) = x/|x|

(8) |F(x)|2 =
(d− 1)2

|x|2
+

1
δ2
ρ(x)

+
1

δ2
Ω(x)

− 2
(d− 1)
|x|δρ(x)

− 2
(d− 1)x · ∇δΩ(x)
|x|2δΩ(x)

+ 2
x · ∇δΩ(x)
|x|δρ(x)δΩ(x)

.

Substituting (7) and (8) into the left hand side of (5) we complete the proof
of Theorem 1.
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sharp constants for convex domains, Z. Angew. Math. Mech. 87 (2007), 632–
642.

[4] H.Brezis and M. Marcus, Hardy’s inequalities revisited. Dedicated to Ennio De
Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2 (1998),
217–237.

[5] E.B.Davies, Spectral theory and differential operators. Cambridge Studies in
Advanced Mathematics, 42. Cambridge University Press, Cambridge, 1995.
x+182 pp.

[6] E. B. Davies, A Review of Hardy inequalities, The Maz’ya anniversary Collec-
tion. Vol. 2. Oper. Theory Adv. Appl. 110 (1999), 55–67.

[7] E. B. Davies, The Hardy constant, Quart.J.math. Oxford (2) 46 (1995), 417–
431.



ON A SHARP HARDY INEQUALITY FOR CONVEX DOMAINS 7

[8] S. Fillippas, V. Maz’ya, A. Tertikas, Sharp Hardy-Sobolev Inequalities , C. R.
Acad. Sci. Paris 339 (2004),no. 7, 483–486.

[9] S. Fillippas, L. Moschini, A. Tertikas, Sharp twosided heat kernel estimates for
critical Schrödinger operators on bounded domains , Commun. Math. Phys.
273 (2007), 237281.

[10] R.L. Frank and R.Seiringer, Non-linear ground state representations and sharp
Hardy inequalities. arXiv:0803.0503v1 [math.AP] 4 Mar 2008.

[11] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and A. Laptev, A geometrical
version of Hardy’s inequalities, J. Funct. Anal. 189 (2002), no 2, 539–548.

[12] M.Hoffmann-Ostenhof, Th.Hoffmann-Ostenhof, A.Laptev and J.Tidblom,
Many Particle Hardy Inequalities, accepted by JLMS.

F. G. Avkhadiev: Chebotarev Research Institute, Kazan State University,
420008 Kazan, Russia. favhadiev@ksu.ru
A. Laptev: Department of Mathematics, Imperial College London, London
SW7 2AZ, UK, Royal Institute of Technology, 100 44 Stockholm, Sweden.
a.laptev@imperial.ac.uk


