A GENERALIZATION OF THE BEREZIN-LIEB INEQUALITY

BY
A .LAPTEV AND YU. SAFAROV

In the early seventies both F. Berezin [B] and E. Lieb [L] (see also [S]) inde-
pendently obtained a Jensen’s type inequality for convex functions of selfadjoint
operators. This inequality turns out to be very useful and has been applied to
various spectral problems, see for example [BSh].

If ¢ is a convex function, Bp is a selfadjoint operator ( not necessarily bounded)
in a Hilbert space H , and moreover the operator Bp can be represented as Bp =
PBP , where P is an orthogonal projection in H then the Berezin inequality states
that

Tr Po(Bp)P < Tr Py(B)P,

provided that the right hand side is finite.

Applying this inequality to the spectral analysis of pseoudodifferential operators
we were interested in two sides estimates of the trace Tr Py(Bp)P when the func-
tion % is not necessarily a convex function. In Theorem 12 of this paper we prove
a trace estimate for such functions. This estimate implies a more general version
of the Berezin inequality (see Corollary 13). In particular we prove the inequality

Tr (Pe(B)P — Pp(Bp)P) > 0,

assuming only that the difference Pyp(B)P —Pyp(Bp)P is from the trace class. We
also obtain inequalities where P is a contraction operator.

1. The operator P*BP. Let H and H, be Hilbert spaces, B be a selfadjoint
operator in H, and P : Hy — H be a bounded operator such that ||P||g,—m < 1.
The operator B is allowed to be unbounded, and then we denote by D(B) its
domain. We are going to consider the operator P*BP acting in the space Hy.
When B is bounded, this operator is well-defined and selfadjoint. However, when
B is unbounded, the natural definition of P* B P might make no sense (for example,
if D(B) N PHy = {0}). In this case we need some additional assumptions.

Let (-,-), || - || and (-,-)o, || - |lo be scalar products and norms in H and H,
respectively. We denote by Ep(A) the spectral measure of the operator B, and
consider the skew-linear form

def

Q[éﬂ?] = QB7P[§777] = /)‘(dEB(/\)Pé.7Pn)7 57"7 € H07

and the corresponding quadratic form
1) Qlel = Qnrle) ™ [A@EsPEPY,  €e
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If B is bounded then Q[¢,n] = (BPE&, Pn) and the form @Q[¢] is defined on the whole
space Hy. In general situation the domain of () is the linear set

2) DQ Y (¢em, : / A (dE5(A)PE, PE) < o0 }.

Obviously, we have

(3) D(Q)={¢€Hy: PEeD(BV?) }
and
(@) [ N @BayPe Pe) = | B2 2

Generally speaking, the set (2) may also be very poor. Besides, even if that is
not true, Q might not generate a selfadjoint operator. Therefore we introduce the
following two conditions which are assumed to be fulfilled throughout all the paper.

(C1) The set D(Q) is dense in Hy.
(Cz2) The form Q-] is semi-bounded and can be closable in H.

Let Q[-] be the closure of the form Q[-]. This closure is defined on some dense
set D(Q) C Hy containing D(Q), and it defines a Hilbert structure on D(Q). We
denote this Hilbert space by Hy, Hy C Hy.

Let H' be a closed subspace of H; which is also dense in Hy, and Q'[-] be the
restriction of the form Q[-] to H'. Then Q'[] is a closed quadratic form in Hy, and
so it generates some selfadjoint operator Bp.

Obviously, if B is bounded then H' = H; = Hy and Bp = P*BP. If B is
an unbounded operator, then Bp is not defined uniquely. Each H' takes care of
a selfadjoint operator Bp, which can be considered as a selfadjoint realization of
P*BP. All further results are valid for any such realization. Through all over
the paper we assume H' to be fixed and deal with the corresponding selfadjoint
operator Bp.

The condition (Cg) is not effective. The following lemma gives the equivalent
condition which is more convenient to deal with.

Lemma 1. The condition (C3) is fulfilled if and only if there exists a constant C
such that

(5) HBIY2PE|? < C(1QIEN + IR, VE € D(Q).

Proof. By lemma 10.1.6 from [BS] the form Q-] can be closed if and only if for any
sequence & € D(Q), k=1,2,..., such that ||€g]lo — 0, kK — oo, and

(7) Q&k,n] =0,  VneD(Q).
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By (3) we can write
Qlew,m = (I +[B|)/2Pg, B+ |B)~V/2Py).

Therefore the form Q[-] can be closed if and only if the sequence (I + |B|)Y/2P¢,
weakly tends to zero in H.

The condition (6) implies that QQ[¢x] are uniformly bounded. Hence, from (5) it
follows that [|(I + |B|)Y/2P&p|| are also uniformly bounded. For any v € D(|B|Y/?)
we have

((T+1B)" 2P ) = (Peu (1 -+ |B)*u) - 0.

Thus, the sequence (I +|B|)/2P¢;, is bounded and weakly tends to zero on the set
D(|B|*/?) which is dense in H. It implies that this sequence weakly tends to zero.
So (5) yields (Ca).

If the estimate (5) does not hold, then there exists a sequence & € D(Q) such
that ||&kllo — 0, Q[éx] — 0, k — oo, but ||(I + |B|)Y/2P¢|| — oo. For these &
the sequence (I + |B|)Y/2P¢;, does not weakly converge, and therefore the form Q-]
cannot, be closed. The proof is complete.

2. Functional spaces. In what follows we always assume all functions to be

measurable. Moreover, we are going to deal only with functions from the class
BV(R) which is defined as follows.

Definition 2. Complex function ¢ € C(R) is from the class BV1(R) if its second
derivatives 9" coincides with a complex measure py, on R in the sense of distribution
theory.

Obviously, the complex measure py, is defined uniquely by the function . For
example, the class BV!(R) contains all linear functions for which ¢ = p,, = 0.
Inversely, for each complex measure p there exists a function ¢ € BV!(R) such that
p = py. This function is defined uniquely modulo a linear function. We denote by
¥* the class of functions which differ from the function ¢ by a linear function. Then
we have one-to-one corespondence between complex measures and factor classes 1*,
Y € BVI(R).

Remark 3. The first derivatives of functions from BV!(R) are functions with lo-
cally bounded variation, which explains the notation BV!. In particular, for
¢ € BVY(R) the first derivative ¢’ is a locally bounded function which is con-
tinuous almost everywhere and has limits ¢'(s — 0), ¢'(s + 0) for every s € R.
Therefore BV (R) C W |,.(R), where W1 | (R) is the Sobolev space.

Real function ¢ defined on R is said to be convex if

plasy + (1 —a)sz2) < ap(st) + (1 — ) p(s2)
for any s1,s2 € R and « € [0, 1]. This immediatly implies that for convex fuctions

(8) p(as) < (1—a)p(0) +ap(s)
and
(9) p(s+1)+p(s—t) —2¢p(s) 20

for all s,¢ € R and « € [0, 1].

The next lemma characterizes the class of convex functions (see [H6|, v.1, The-
orem 4.1.6). We prove it here for the sake of completeness.
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Lemma 4. Function ¢ is convez if and only if ¢ € BVY(R) and p, is a positive
measure.

Proof. Let ¢ be convex. Then in view of (9) for a real non-negative test function
f € D(R) we have

0< / [p(s + 1) + s — 1) — 2 0(s)) £(5) ds
= [@) s+ 1)+ S5~ 1)~ 2 f(5)) .

Dividing by 2 when t — 0 we obtain (", f) > 0. Since a positive distribution is a
positive measure this proves the first part of the lemma.

Now assume that ¢ € BV!(R) and that ¢ coincides with a positive measure.
Let s1 < s2, a € [0, 1], and

0, for s < sy and s > s9,

f(s) = ¢ a(s—s1), for s1 < s < as;+ (1 — a)so,
(1—a)(s2—s), foras;+(1—a)sz<s< ss.

The function f is non-negative and continuous, and
['(s)=ad(s—s1)+ (1 —a)d(s—s3) — (s — as; — (1 — a)sa),
where §(-) is the delta-function. Therefore
ap(sy) + (1 —a)p(s2) — plasy + (1 - a)sz)

— [ e 1) ds= 0.0 = [ 1dp, >0

This completes the proof.

Obviously Lemma 4 can be reformulated in the following way : the function ¢ is
convex if and only if ¢ € BV1(R) and the first derivative of ¢ is a non-decreasing
function. Now we introduce

Definition 5. Let ¢v € BV1(R) and ¢ be a convex function. We say that the
function ¢ is dominated by ¢ if dpy = g dp, with some density g € Lo (R, py). In

this case we denote |¢|, 2ef 19llz(®.p,)-

Obviously if ¢ is dominated by ¢ then any of the representative from the class
®* is dominated by every function from ¢*.

Lemma 6. Let ¢y € BVY(R) be dominated by a non-negative convex function .
Then there exists a linear function | such that

(10) [(s) = Us)| < [Plowls),  VseR.

Proof. Assume first that there exists a point so such that ¢'(sp — 0) < 0 and
¢'(so+0) > 0. Without loss of generality we assume [t)|, = 1, otherwise we replace
¢ by ||, ¢. Then |py(I)| < py(I) for any bounded interval I. Therefore,

(11) [9'(s+£0) =9 (50 +0) [ < @' (s£0) = ¢'(50+0),  s0<5,



A GENERALIZATION OF THE BEREZIN-LIEB INEQUALITY 5

(12) |9/ (s +0) — ' (s0— 0)| < ¢'(s0—0) — ¢ (s+0), s < So,
and for arbitrary s; < sg

(13) 9" (s2) = 9" (s1) | < @' (s52) = ¢'(s1).

Let us show that there is a constant C' € R, such that

(14) [9'(s) =C| < [¢'(s)], VseR.

We introduce two intervals I; and I such that

Iy = [=¢'(50 4+ 0) — ¢'(s0 + 0), ='(s0 +0) + ¢'(s0 + 0)],

(15) Iy =[—¢"(so — 0) + ¢ (s0 — 0), —=¢'(so — 0) — ¢’ (s0 — 0)].
If in (13) we substitute so = s9 + 0 and s; = s9p — 0 we have
—4)'(s0 — 0) +¢'(s0 — 0) < —4)'(s0 + 0) + ¢ (s0 + 0),

—p'(s0 4+ 0) — @ (50 +0) < —b'(s9 — 0) — ' (s0 — 0).
In particular, this implies that the intersection of I; and I is not empty. From
(11) we obtain that (14) is satisfied for any sop < s and C' € I;. Respectively, (14)
follows from (12) for any s < s and C' € I5. If now C' € I, N I3, then the inequalify
(14) holds for all s < sp, $9 < s and therefore for s =59 —0 and s =s9+0.
The inequality (14) implies

|9(s) = C (s — 50) — 80|—|/ C)dt|

< / () dt = p(s) — @(s0) < @(s), 5> 50,

|4(s) — C (5 — s0) — 80|—|/ C)dt |

< _/ & (8) dt = o(s) — o(s0) < @(5), 5 < 50,

and we obtain (10) with I(s) = C (s — so) + ¥ (s0).
If there is no such point sy then either p(s) — 0 as s — —oo or p(s) — 0 as
s — 4o00. Let, for example, we have the first case. Then ¢’ is positive, ¢'(s) — 0
as § = —oo and ¢(s) = fjoo ¢'(t) dt. From the inequality, obtained by analogy
with (11), we have
[9'(s) =9 (514 0) [ < ¢ (s) =9/ (s1+0),  s1<s.

This implies that there exists the limit C' = limg, , _~ ¥’(s1 + 0) and
|¢'($) —C < ¢'(s).
Therefore if C7 = limg_, o (9)( C's) we have

[p(s) — cS—cl|—|/ dt|</s o/ (1) dt = o(s),

and we have (10) with [(s) = C's + Cy. The lemma is proved.

The next proposition characterizes the dominating property not via measures
but via functions themselves.
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Proposition 7. Function ¢ € BVY(R) is dominated by the convex function ¢ if
and only if

(16) |P(s+1) +9(s —=1) =2¢(s) [ < C(p(s +1) + p(s = 1) =2¢(s)), Vs,tE€R,

for some constant C'. The minimal constant C' satisfying (16) coincides with |i)|,.

Proof. Let us assume first that (16) is fulfilled with some constant C' > 0. Let
1 = Re v, 1o = Im1p. Then for any real non-negative test function f we have

_¢y / [p(s + 1) + (s — 1) — 2 0(s)) £(5) ds
< /[¢k(s +t) + (s —t) — 295(s)] f(s) ds
< e, / lo(s + 1) + (s — £) — 20(s)] £(5) ds,

where k£ = 1,2 and C}, are some constants such that C = \/C? + C%. Dividing by
t2 when ¢ — 0 we obtain

(17) —C’k/fdp@g/fdpwk ng/fdpy,, k=1,2.

This implies that the measure py, = py, +1 py, is absolutely continuous with respect
to p,. Therefore, by the Radon-Nikodym theorem we have dp,, = g dp, with some
complex density g € L1 10c(R, py)-

Now from (17) it also follows that | [ fdpy | = | [ fgdp,| < C [|f|dp, for
any (not necesserily non-negative) test function f. Hence, the function g defines a
linear continuous functional on the space L;i(R, p,,) which norm is estimated by C,
and then g € Lo (R, py), 19//2.c(r,p,) < C-

It remains to prove the necessity. Let dpy = gdp, with g € L (R, p,), and

C1 = |Regllzomyp,y,  Co=IImgllz ®.p,)-
Then the functions
(18) = < 0L o+ Rep, 0o+ Imy

are convex because their second derivatives are positive measures, and so for each
of them (9) holds. These estimates altogether mean exactly that

|Reyp(s+t)+Retp(s—t)—2Ret)(s) | < Ci(p(s+t)+e(s—t)—2¢p(s)), Vs,t€R,

| Im¢p(s+t)+Imep(s—t)—2Imep(s) | < Cy (p(s+t)+p(s—t)—2¢(s)), Vs,t€R,

which implies
[ P(s+1) + (s —8) =2¢(s) | < Co(p(s+1) + (s —1) —2¢(s)), Vs;teR

with Co = \/C? + C3 = ||gllL_(R.p,)- The proof is complete.
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Example 8. For the convex function ¢(s) = s?/2 the measure p,, coincides with
the Lebesgue measure on R.. In this case ¢ € BV}(R) is dominated by ¢ if only if

) € W3 1oc(R) and 9" € Loo(R), and [¢], = [[¢" |1 m)-
Futher on we use the following well known result.

Theorem 9 (Jensen inequality). Let v be a positive measure on R such that
v(R) =1 and [ sdv < oo, and ¢ be a convex function from Li(R,v). Then

/w(s)dv — go(/sdy) > 0.

Corollary 10. Let us assume that in Theorem 8 v(R) L, < 1. Then

(19 (=) p0)+ [wldr— ([ sn) = o

Proof. If we apply (8) and the Jensen inequality we have

go</sdu> < (1—Cu)s0(0)+s0(/8051d'f) < (1—cu)<p(0)+/<p(8)d%

which proves the corollary.

Corollary 11. Let v be a positive measure on R such that v(R) def o<1, [sdv<

o0, and ¢ € BVI(R) N Li(R,v) be dominated by a convex function ¢ € L1(R,v).
Then

20) (=) 90)+ [ v dv = ([ sd)
< Wl (1= )9O + [ pls)dv— ([ san).

Proof. As in the proof of Proposition 7 we introduce the convex function (18), and
apply to each of them the inequality (19). Then we obtain the inequalities

|(1—c,,)Rel/)(O)+/Rew(s)du—Re¢(/sdu)|
<Ci (1) el0)+ [ oldv— ([ siv)),

|(1—c,,)Im1/)(0)—|—/Im1,[)(s) dy—1m¢(/sdu)|
<Ca((1-c) 9O + [ dv—p( [ sa)),

which are equivalent to (20).
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3. Berezin—Lieb inequality. We study operators of the form
def * *
G(B, P;v) = 4(0) (I - P*P) + P*y(B)P — ¢(Bp),

where ¢ € BV1(R). Note that under the conditions (C;) and (Cs) the operator
G(B, P;1) is well defined and equal to zero for linear functions ¢. When B is
unbounded, for some functions ¢ the expression P*¢(B)P or G(B, P;1) might
make no sense. Therefore we introduce an additional restriction.

(C3) The set Dy, ={& € Hy: P € D(¢(B)) } N D(y(Bp)) ND(Bp) is dense in

Hj and the operator G(B, P;1) defined on D, is bounded.
Under this conditions we extend the operator G(B, P;1) to the whole Hilbert
space Hy, and then P*i(B)P is a well defined selfadjoint operator with domain
D(¢(Bp)). Obviously, if the condition (C3) is satisfied for a function ¢ then it is
also satisfied for any ¢, € ¢* and Dy, = Dy, G(B, P;v¢1) = G(B, P;1). Besides,
if for some convex function ¢ the set D, is dense then in view of Lemma 6 for any
¢ dominated by ¢ the set D, is also dense.

We denote by o(Bp) the spectrum of the selfadjoint operator Bp and by o.(Bp)
its continuous part. Let cho.(Bp) be the closed convex hull of o.(Bp), and
Int cho.(Bp) be its interior. (The last set coincides with the interior of the minimal
interval containing o.(Bp).)

Theorem 12. Let the conditions (C1)-(Cs) be fulfiled. Let ¢p € BVY(R) be dom-
inated by a convex function ¢ such that p, (Int ch O'C(Bp)) = 0. Assume that the
condition (Cs) is fulfilled for both ¢ and v and that the operators G(B, P; ),
G(B, P;v) are from the trace class S1. Then

(21) | TrG(B, Pi¢) | < [, TrG(B, P; ).

Proof. Let ¢y € ¢* be a non-negative representative, and ¢y € ¥* be such represen-
tative that 10| < [¢], ¢o (see Lemma 6). If Int ch o.(Bp) is not empty we assume
in addition that ¢ = 0 on cho.(Bp). Then 9 is also equal to zero cho.(Bp).

For every { € D,, we have

(22) / oo(N) (dE5(NPE, PE) = (¢0(B)PE, PY)
= (G(B, P;90)&,&)0 + (po(Bp)E, &)o.

Since the function ¢ is non-negative and the operator G(B, P;pg) is bounded,
then (22) can be extended on ¢ € D(po(Bp)). For chosen representative 1y we
have D(po(Bp)) C D(¢o(Bp)) and

(23) / $o(N) (dE5(N)PE, PE) = ($o(B)PE, PE)o
= (G(B,P; ¢0)575)0 + (¢0(BP)575)0

is also valid for & € D(po(Bp)).

Let II. be the spectral projection of the operator Bp corresponding to the closed
interval cho.(Bp). We choose an orthonormed basis {{;} in the subspace (I —
I1.)Hy formed by eigenfunctions & of the operator Bp with eigenvalues g lying
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outside ch o.(Bp). It is clear that & are contained in D(po(Bp)) C D(¢o(Bp)). We
choose also an orthonormed basis {7;} in the subspace II.H, with n; € D(¢¢(Bp)).
Then {{x,n;} form an orthonormed basis in the whole space Hy.

Let v, be the positive measures with dvy, = (dEp(X) P&k, P&). Then

(¢0(BP)Ek: &k)o = @0 ((Bpék: &k)o) = o(Ak),
(%0 (BP)Ek: €k)o = Yo ((Bpék: &k)o) = Yo(Ak),
and by (22), (23)
(0o(B) P&k, P&y) = /‘PO(}\) dvy,

(6o(B)PE PE) = [ ho() do.
Therefore, applying (20) we obtain

(24) | (G(B, P;ho)éx, ko | < [l ((G(B, P;00)r; Ex)o ).
Since @o(Bp)n; = 0 and 1o(Bp)n; = 0, we have

(G(B, P;0)njsni)o = ¢(0) (I = P*P)nj,m;)o + (po(B)Pnj, Pnj),

(G (B, P;o)ngs nio = $(0) (I = P*P)n,1j)o + (bo(B)Pnj, Pnj).
Then in view of (22), (23) and the inequality |¢o| < ||, po We obtain

| (G(B, P;vo)nj,mi)o| < |¥le (G(B, P;@o0)nj,nj)o-

Summing up these inequalities and inequalities (24) we obtain (21). The proof is
complete.

If ¢ = ¢ then Theorem 12 is a generalization of the inequality obtained in [B]
and [L].

Corollary 13 (generalized Berezin—Lieb inequality). Let the conditions (Cy )
(C>) be fulfiled. Let ¢ be a convex function such that p,(Intcho.(Bp)) = 0. As-
sume that (Cs) is fulfilled for the function ¢ and that G(B, P; ) € &1. Then

(25) TrG(B, P;p) > 0.

The conditions of Theorem 12 are rather complicated. But most of them are
needed only in order to define the unbounded operators. In particular, if B is
bounded then (C;)—(Cj3) are fulfilled automatically, and Theorem 12 can be refor-
mulated in the following way.

Corollary 14. Let the operator B be bounded. Assume that ¢ € BVY(R) is dom-
inated by a convezr function ¢ such that p,(Intcho.(Bp)) = 0, and G(B, P; ),
G(B, P;v) are from &1. Then the estimate (21) holds.

Let us denote by oess(Bp) the essential spectrum of Bp. We have o.(Bp) C
0ess(Bp), and therefore cho.(Bp) C choess(Bp). The following proposition gives
another set of sufficient conditions to Theorem 12.
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Proposition 15. Let conditions (Cy)—(Cy) be fulfilled, and condition (C3) be ful-
filled for a non-negative convex function ¢ such that the operator ¢(0) (I — P*P) +
P*o(B)P is from the trace class &1. Then
(1) ¢ is equal to zero on the set ch oess(Bp);
(2) o(Bp) € 61, and, consequently, G(B, P;p) € 61;
(3) for any function ¢ € BV1(R) dominated by ¢ the condition (C3) is fulfilled
and G(B, P;v) € 6.

Proof. Let 0y be eigenfunctions of the operator ¢(0) (I — P*P) + P*p(B)P corre-
sponding to eigenvalues pyg, |u1| < |pe2| < ... By (19) for any ¢ € Hy we have

(26)  ©(0) (I = P*P)&,§)o + (P e(B)PE, £)o

— (0) (1 - / (dE5(\)PE, PE)) + / () (dE5(\) PE, PE)
> o / M(dE(\PE, PE)) = o((Brt.€)o).

since the operator ¢(0) (I — P*P) + P*p(B)P is compact, (26) implies that there
exists a positive sequences £; — 0 such that

lp((BpE,€)o)| < g

for any normed vector £ which is orthogonal to all 8 with k£ < 7. By the minimax
principle (see for example [RS], Theorem XIII.1) it follows now that ¢(s) — 0 as
s — Fo0 if Bp is unbounded from above or from below respectively, and that ¢ = 0
on oess(Bp). Obviously the set of zeros of a convex function is necesserily convex,
and therefore we have proved (1).

Let & be the orthonormed eigenfunctions of Bp with eigenvalues Ay lying outside
choess(Bp). By (26) we have

©(0) (I = P*P)&k, &k)o + (P*0(B) P&k, &x)o > 0 ((BpEk, Ek)o) = ¢ (k).

Since ¢(0) (I —P*P)+P*p(B)P € &, the positive series Y | p(\g) converges, which
means that ¢(Bp) € &1.

To prove the third assertion of the lemma we choose using Lemma 6 a function
Yo € ¢* such that || < |¢|, ¢. Then for any ortonormed basis {(;} in Hy we have

[40(0) (I = P*P)C, C)o + (P 4o (B) PC, Ci)o |
< |%o(0) (I = P*P)Ck,Cr)o | + | (P* 1o (B)PCk; Ck)o |
< |9y (#(0) (I = P*P)C, Ck)o + (P*@(B)PCi, Ci)o) s

| (%0(BP)Cks Ck)o | < [¥lp (9(BP)Ck: Cko-

These estimates imply (see [RS], ch. VI, problem 26) that ¢, (0) (I—P*P)+P*yy(B) P}
and 1o (Bp) are from the trace class. Since the operator G(B, P;-) is independent,
of the choice of representative from the factor-class ¢*, this completes the proof.

Remark 16. In fact, proving (3) we have obtained a more precise result. Namely,
if » € BVY(R) is dominated by ¢ then for a representative 1y € 1* such that
[Yo| < [¥], ¢ both operators 1y (0) (I — P*P) + P*iy(B)P and y(Bp) are from
the trace class.

Proposition 15 with ¢(s) = s?/2 immediately implies
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Corollary 16. Let BP be from the Hilbert-Schmidt class Gy. Then
(1) either cess(Bp) = {0} or cess(Bp) = 0;
(2) for any function ¢ € W2, | .(R) such that " € Lo (R), the condition (C3)
is fulfilled and G(B, P;¢) € G;.

From Theorem 12 and Corollary 16 we obtain

Corollary 17. Let Hy=H and P : H — H be an orthogonal projection in H.
If the operator BP 1is from the Hilbert-Schmidt class, then for any function v from
the Sobolev class W2 | .(R) such that 9" € Lo (R) we have

o00,loc

T (PYBYP — PY(PBP)P) | < & 0" iy |PBU ~ P,

Remark 18. When we deal with a fixed operator B it is sufficient to define the
functions ¢ and v only on the set

U to(B) C R.
0<t<1

Then all the conditions involving ¢ and 1 are obviously needed to be fulfilled only
on this set.



12 BY A.LAPTEV AND YU.SAFAROV

REFERENCES

[B] F. Berezin, Convez functions of operators., Mat.sb. 88 (1972), 268-276. (Russian)

[BS] M. Sh. Birman and M. Z. Solomyak, Spectral theory of selfadjoint operators in Hilbert
space., D. Reidel Publ. Comp., 1987.

[BSh] F. Berezin and M. Shubin, The Schrédinger equation, Kluwer Acad. Publishers, Dordrecht,
Boston, 1991.

[H6] L. Hormander, The analysis of Linear Partial Differential operators. I, Springer-Verlag,
Berlin, Heidelberg, New York, Tokyo, 1983.

[L] E.H. Lieb, The classical limit of quantum spin systems, Comm.Math.Phys. 31 (1973),
327-340.

[RS] Reed and Simon, Methods of mordern mathematical physics v.4., Academic Press, New
York, San Francisco, London, 1978.

[S] B. Simon, The classical limit of quantum partition functions, Comm.Math.Phys. 71 (1980),
247-276.

DEPARTMENT OF MATHEMATICS, ROYAL INSTITUTE OF TECHNOLOGY,
S-100 44 STOCKHOLM, SWEDEN
E-mail address: laptev@math.kth.se

DEPARTMENT OF MATHEMATICS, KING’S COLLEGE LONDON,
STrAND, LONDON WC2R 2LS, UK
E-mail address: udah@bay.cc.kcl.ac.uk



