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1. Introduction

Essentially due to Hardy [20] it is well known that the following Lp-Hardy inequality holds in
any dimension d! 2 for every 1< p< d. If u ∈W1,p(Rd) then u/|x| ∈ Lp(Rd) and it satisfies

ˆ
Rd
|∇u|p dx! µp,d

ˆ
Rd

|u|p

|x|p dx, µp,d :=

(
d− p
p

)p

. (1.1)

Moreover, the constant µp,d is optimal in the sense that (1.1) does not hold with any bigger
constant.

The work on Hardy inequality (1.1) and its extensions (including bounded domains) have
emerged significantly in the last decades due to its applications to nonlinear partial differential
equations with singular potentials both for stationary and evolution boundary value problems.
To randomly pick up few relevant references concerning Lp Hardy–Sobolev type inequalities
with positive reminder terms involving potentials in terms of either the distance to the boundary
or the distance to a point we may refer for instance to [1, 3, 5, 11, 16–18, 21, 22, 30], the works
cited therein as well as the subsequent developments on this subjects. For more recent papers
related to Lp-Hardy inequalities and their applications to singular elliptic equations we refer
to [12, 19, 25] and references therein. Part of the quoted papers provide various proofs for
inequality (1.1) which hold for real-valued functions u. For the sake of clarity, later in this
paper we will present a short proof of (1.1) which applies also for complex-valued functions
u. The extension of inequality (1.1) to domains with boundary, subject to Dirichlet boundary
conditions, follows straightforwardly by the trivial extension of the test functions u by zero
outside the domain under consideration.

1.1. The free p-Laplacian

The Hardy inequality (1.1) provides important information on properties of the well-known
Dirichlet p-Laplace operator, 1< p<∞, and its L2(Rd) sesquilinear form formally defined
initially on C∞

c (Rd) by

−∆pu :=−div
(
|∇u|p−2∇u

)
, hp (u,v) := (−∆pu,v)L2(Rd) =

ˆ
Rd
(−∆pu)v dx,

respectively. The associated L2(Rd) closed quadratic form hp of −∆p is given on its form
domain D(hp) :=W1,p(Rd) by

hp [u] =
ˆ
Rd
|∇u|p dx, ∀u ∈D (hp) . (1.2)

As usual, we understand the positivity of −∆p through the positivity of its quadratic form:

−∆p ! 0 :⇐⇒ hp [u]! 0, ∀u ∈D (hp) ;

we say that −∆p is a non-negative operator.
In order to give a motivation of the main results of the paper we need to introduce some

definitions about finer properties of −∆p.
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Definition 1.1. We say that

−∆p is a subcritical operator :⇐⇒ −∆p satisfies a Hardy-type inequality,

which means that there exists a non-negative potential V ∈ L1loc(Rd), V (= 0, such that −∆p !
V| · |p−2·, in the sense of L2 quadratic forms, that is,

hp [u]!
ˆ
Rd
V|u|p dx, ∀u ∈W1,p (Rd) .

Otherwise, we say that −∆p is a critical operator (i.e. there is no Hardy inequality for −∆p).

In view of (1.1) we deduce that in the cases 1< p< d the p-Laplace operator is subcritical
since we may take V(x) := 1/|x|p and write in the sense of forms

−∆p ! µp,d
| · |p−2·
|x|p . (1.3)

However, when p! d the p-Laplace operator becomes critical. More precisely we have

Proposition 1.1. Let p! d. If V ∈ L1loc(Rd) is a non-negative potential such thatˆ
Rd
|∇u|p dx!

ˆ
Rd
V|u|p dx, ∀u ∈ C∞

c

(
Rd) , (1.4)

then V= 0 a.e. in Rd.

In view of (1.1) we also may address the question of studying the criticality of the Hardy
operator

H :=−∆p−µp,d
| · |p−2·
|x|p ! 0, 1< p< d.

The following proposition shows that H is critical for 1< p< d.

Proposition 1.2. Let 1< p< d. If V ∈ L1loc(Rd) is a non-negative potential such thatˆ
Rd
|∇u|p dx−µp,d

ˆ
Rd

|u|p

|x|p dx!
ˆ
Rd
V|u|p dx, ∀u ∈ C∞

c

(
Rd) , (1.5)

then V= 0 a.e. in Rd.
That is, the operator −∆p−µp,d

|·|p−2·
|x|p is critical when 1< p< d.

The criticality of the shifted operator H can be also interpreted as an extra optimality of the
Hardy inequality (1.3): not only that the inequality does not hold with any bigger constant, but
no non-trivial non-negative function can be added to its right-hand side.

1.2. The magnetic p-Laplacian

For the scientific community working in mathematical physics area it is also important to
study Schrödinger-type operators in the presence of magnetic fields. To fix the ideas, let
B : Rd → Rd×d be a smooth matrix-valued function representing the magnetic field. Such a
function B can be identified with a smooth tensor field (or a 2-differential form) that we denote
by the same symbol B. Physics dictates that B satisfies the Maxwell equation dB= 0, where
d is the exterior derivative. Mathematically, B is a closed form. Consequently, there exists
a smooth magnetic potential A : Rd → Rd, which can be interpreted as a 1-differential form,
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such that dA= B. More specifically, Bij = Aj,i−Ai,j, where by Aj,i we understand the partial
derivatives ∂Aj/∂xi (see e.g. [8], where precise details for the formalism of A and B were
given). Given these physical quantities, we can extend the notions of divergence div, gradient
∇ and Dirichlet p-Laplacian ∆p operators to their corresponding magnetic versions divA, ∇A

and ∆A,p, respectively. The magnetic p-Laplacian is formally defined on C∞
c (Rd) by

∆A,pu := divA
(
|∇Au|p−2∇Au

)
, (1.6)

where the magnetic gradient and magnetic divergence are given by

∇Au :=∇u+ iA(x)u; divAF := divF+ iA ·F, (1.7)

for any smooth vector field F : Rd → Cd.
The associated quadratic form hA,p of the Dirichlet magnetic p-Laplacian∆A,p with its form

domain D(hA,p) is defined by

hA,p [u] :=
ˆ
Rd
|∇Au|p dx=

ˆ
Rd
|∇u+ iA(x)u|p dx, ∀u ∈D (hA,p) := C∞

c (Rd)
‖·‖

,

where the norm ‖ · ‖ with respect to which the closure is taken is given by

‖u‖ := p

√
hA,p [u] + ‖u‖pLp(Rd).

Let us point that the quadratic form above and its domain are independent on the choice of
A (for a given B). Indeed, if A, Ã : Rd → Rd are two magnetic potentials such that dA= dÃ= B
then A− Ã is a closed 1-form. Then from the Poincaré lemma we obtain that A− Ã is exact
form, so there exists a scalar field φ : Rd → R such that A− Ã= dφ. It is easy to see that

D (hA,p) =D
(
hÃ,p
)

and hA,p [ψ] = hÃ,p
[
ψ eiφ

]
, ∀ψ ∈ C∞

c

(
Rd) . (1.8)

In view of (1.8) the magnetic Hardy inequalities under consideration do not depend on the
choice of A (for distinct magnetic potentials A, Ã they are equivalent). This argument also
shows that the operators ∆A,p and ∆Ã,p are equivalent in the sense of the relation ∆A,p =

e−iφ∆Ã,pe
iφ.This is known as the gauge invariance if p= 2.

An important tool in the study of magnetic fields is the diamagnetic inequality also called
the Kato’s inequality (see, e.g. [4, section 5.3, theorem 5.3.1]). It says that

|∇Au(x) |! |∇|u|(x) | a.e. x ∈ Rd, ∀u ∈D (hA,p) . (1.9)

It is clear thatW1,p(Rd)⊂D(hA,p) if A is bounded. Also, in view of (1.9), u ∈D(hA,p) implies
|u| ∈W1,p(Rd).

We extend the notions of subcriticality/criticality of definition 1.1 also to −∆A,p. Of
course, if B= 0 then one may choose A= 0 and therefore ∆A,p =∆p, i.e. the magnetic-free
p-Laplacian is just the standard p-Laplacian.

If p= 2, it is well known that introducing non-trivial magnetic perturbations of Hamiltonian
operators induces repulsive effects in quantum mechanics. These physical effects were math-
ematically quantified by improved Hardy-type inequalities in [27, 33] and also improved
Rellich-type inequalities in [14]. For more recent Hardy and Rellich inequalities for
Aharonov–Bohm type magnetic fields, further developments and applications in the L2-setting
wemention [7, 8, 13, 15, 26]. The objective of the present paper is to investigate these improve-
ments beyond the linear case p= 2. More specifically, when replacing the p-Laplacian with the
non trivial magnetic p-Laplacian, we intend to show that the corresponding Lp Hardy inequal-
ities are improved.
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1.3. Main results

Our main results read as follows.

Theorem 1.1. Let p! d and B be a smooth and closed magnetic field with B (= 0. Then there
exists a constant CB,p,d > 0 such that for any magnetic potential A with dA= B we have

ˆ
Rd
|∇Au|p dx! CB,p,d

ˆ
Rd
ρ(x) |u|p dx, ∀u ∈D (hA,p) , (1.10)

where

ρ(x) :=
1

|x|d (| log |x||p+ |x|p−d)
.

Theorem 1.1 improves proposition 1.1 by asserting that a non-trivial magnetic p-Laplacian
−∆A,p becomes subcritical when p! d. Note that the constant CB,p,d depends on B and not
on A, which shows that our result is correctly gauge invariant. Moreover, the local behavior of
the weight ρ both at zero and infinity seems to be sharp (it cannot be improved), as emphasized
in the proof of theorem 1.1.

Notice also that theorem 1.1 is known to hold when 1< p< d with (ρ(x),CB,p,d) =
(1/|x|p,(d− p)p/pp) due to Hardy inequality (1.1) and diamagnetic inequality (1.9).

Theorem 1.1 was previously analyzed in the case p= d= 2 in several papers. For any B (= 0
it was proved in [8] with ρ(x) = 1

1+|x|2| log |x||2 . Under the additional condition
1
2π

´
R2

#B dx (∈ Z
where #B := B12 it was proved with ρ(x) = 1

1+|x|2 in [27].
The result of theorem 1.1 is new for all the cases p> d or p= d> 2. Moreover, a very

important feature of the weight ρ arises at the origin where it is unbounded which allows
to improve the previous results even in L2 setting where usually bounded weights have been
previously obtained, to our knowledge.

Very recently, in [9, theorem 6.1 and remark 6.6] the authors proved an inequality of
type (1.10) in the case p= d= 2 with an unbounded weight ρ but just for the particular case of
a compactly supported magnetic field B. For more particular vector potentials of Aharonov–
Bohm type A(x) = ψ

(
x
|x|

)
(−x2,x1)

|x|2 inequality (1.10) was shown with the unbounded potential

ρ(x) = 1/|x|2 in [27].

Theorem 1.2. Let 2" p< d and B be a smooth and closed magnetic field with B (= 0. Then
there exists a constant c(p)> 0 such that for any vector field A with dA=B we have
ˆ
Rd

|∇Au|p dx−µp,d

ˆ
Rd

|u|p

|x|p dx! c(p)
ˆ
Rd

∣∣∣∇A

(
u|x|

d−p
p

)∣∣∣
p
|x|p−d dx, ∀u ∈D (hA,p) . (1.11)

The constant c(p) in (1.11) is explicitly given by

c(p) := inf
(s,t)∈R2\{(0,0)}

[
t2 + s2 + 2s+ 1

] p
2 − 1− ps

[t2 + s2]
p
2

∈ (0,1] . (1.12)

Our proof of theorem 1.2 is valid also in the case p ∈ (1,2) with the constant c(p) in (1.12).
However, this case is irrelevant because c(p) = 0 when p ∈ (1,2) (see proposition 3.1).

Remark 1.1 (open problems). The validity of theorem 1.2 in the cases p ∈ (1,2) remains an
open problem (in this respect, the algebraic inequalities in [5, lemma 3.1] or [32, lemma A.4]
could be eventually useful).
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Also, finding the optimal constant in inequality (1.11) is an interesting open problem. We
expect it to be larger than the explicit constant in (1.12) and to depend also on the magnetic
field B and d as well.

Theorem 1.2 is very useful and effective for our further purposes. In the case B= 0 and
p= 2 we can notice that c(2) = 1 in (1.12) and this is indeed optimal since inequality (1.11)
becomes an identity. This ‘magical’ identity (applied in [6, equation (4.7), p 454] to radial
functions) was in particular the key point to show improved Hardy inequalities in bounded
domains with reminder terms in L2 depending on the first eigenvalue of the Dirichlet Laplacian
in two dimensions and on the volume of the domain. In particular, this shows that the operator
−∆− µ2,d

|x|2 is subcritical in bounded domains and explicit lower bounds are known (see, e.g. [6,
theorem 4.1]). The obtained lower bounds are optimal in balls. In view of theorem 1.2 similar
arguments could be directly applied in the Lp setting, with 2" p< d, to show that the operator
H :=−∆A,p−µp,d

|·|p−2·
|x|p is subcritical as emphasized in the following theorem.

Theorem 1.3. Let 2" p< d and B be a smooth and closed magnetic field with B (= 0. Then
there exists a constant CB,p,d > 0 such that for any vector field A with dA=B we haveˆ

Rd
|∇Au|p dx−µp,d

ˆ
Rd

|u|p

|x|p dx! CB,p,d

ˆ
Rd
ρ(x) |u|p dx, ∀u ∈D (hA,p) , (1.13)

where

ρ(x) :=
1

|x|p
(
1+ |log |x||p

) .

Theorem 1.3 improves the Hardy inequality (1.1) for 2" p< d, when adding a non-trivial
magnetic field. Thus, the operator−∆A,p−µp,d

|·|p−2·
|x|p becomes subcritical in contrast with the

magnetic-free operator−∆p−µp,d
|·|p−2·
|x|p which is critical when 1< p< d (cf proposition 1.2).

Also, as in theorem 1.1, the obtained weight ρ is unbounded. This generalizes and improves
[8, theorem 1.1] from L2 to the Lp setting by obtaining an unbounded weight ρ.

Finally, let us discuss the Aharonov–Bohm (AB) potential

Aβ (x) = β
(x2,−x1)

|x|2 , β ∈ R, (1.14)

in the case of dimension d= 2. Though very special and unpleasantly singular (Aβ is not loc-
ally square integrable), (1.14) is sometimes considered as a magnetic choice ‘par excellence’.
Indeed, it leads to the Dirac delta magnetic field B(x) = 2πβδ(x), so it can be considered as a
magnetic analogue of point interactions in the case of scalar potentials.

Theorem 1.4. Let d= 2, 1< p< 2 and let Aβ be given by (1.14). If β (∈ Z, then there exists a
constant

λβ (p)>
(
2− p
p

)p

such that ˆ
R2
|∇Aβu|p dx! λβ (p)

ˆ
R2

|u|p

|x|p dx, ∀u ∈ C∞
c

(
R2) . (1.15)

To our knowledge theorem 1.4 is new in the literature and it provides an improvement of
the best constant λβ(p) in the Hardy inequality (1.15) with respect to the non-magnetic case
when adding AB magnetic fields Aβ with β (∈ Z.

6
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Remark 1.2 (open problem). However, a more constructive proof with explicit estimates on
the constant λβ(p) remains an open problem. A reasonable question that we could address
is whether λβ(p) is comparable with a quantity depending on dist(β,Z). If yes, then it will
match with the result in the case p= 2.

The case p= d= 2 is known to hold for test functions u ∈ C∞
c (R2 \ {0}) due to [27], where

the optimal constant was identified with λβ(2) = dist(β,Z)2. The approach of [27] is based
on polar coordinates and it is not clear how to generalise it for p< 2. However, some partial
results were obtained in [2] where a compromise was done to get an improved explicit constant
for the Aharonov–Bohm potential with respect to the free magnetic case. This is a mean value
Lp inequality for the magnetic gradient and its adjoint as follows.

Theorem 1.5 (cf theorem 2.1.1, [2]). Let d= 2, 1< p< 2 and let Aβ be given by (1.14). Then

(‖∇Aβu‖Lp(R2) + ‖∇Aβu‖Lp(R2)

2

)p

!





√
(2− p)2 +β2p2

p





pˆ
R2

|u|p

|x|p dx (1.16)

for any u ∈ C∞
c (R2).

Notice that |∇Aβ ū|= |∇−Aβu|, but not |∇Aβ ū|= |∇Aβu| in general, unless u is real valued
test function. In this latter case inequality (1.16) reduces to (1.15) with

λβ (p) =





√
(2− p)2 +β2p2

p





p

which is strictly larger than
(

2−p
p

)p
provided β (= 0. Although this answers partially to remark

1.2 the general case still remains open.
As we have already mentioned theorem 1.5 was proved in [2, section 2.5] by applying the

divergence theorem combined with Hölder inequality against an arbitrary potential F which
was subsequently particularised to obtain the result. For the sake of completeness we give a
direct proof of theorem 1.5 in section 4.2. Further extensions in higher dimensions of inequal-
ity (1.16) were recently obtained in [24].

Remark 1.3. Inequality (1.16) gets better for large β (the right-hand side in (1.16) can be as
large as one wants when β becomes large) comparing it with the ‘proper’ Hardy inequality
when p= 2 (see [27]), i.e.

ˆ
R2
|∇Aβu|2 dx! dist(β,Z)2

ˆ 2

R

|u|2

|x|2 dx, ∀u ∈ C∞
c

(
R2 \ {0}

)
. (1.17)

The way β appears on the right-hand side of the inequality (1.16) is a bit striking but in fact
natural. The interesting part (gauge invariance, etc) of the magnetic field comes exactly from
the cross terms when trying to ‘develop’ the p-powers of |∇Aβu|p and |∇Aβ ū|p. But this diffi-
culty disappears (at least if p= 2) when considering the mean value because the cross terms
cancel out:

|∇Aβu|2 + |∇Aβ ū|2

2
= |∇u|2 + |β|2 |u|

2

|x|2 .

7
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This implies

‖∇Aβu‖2L2(R2) + ‖∇Aβu‖2L2(R2)

2
! |β|2

ˆ
R2

|u|2

|x|2 dx. (1.18)

Alternatively, we can also see (1.18) rapidly by considering the Fourier expansion of u i.e.
u= u(r,θ) =

∑∞
n=−∞ un(r)einθ for which we have (due to the Parseval identity)

‖∇Aβu‖2L2(R2) + ‖∇Aβu‖2L2(R2)

2

=
1
2

∞∑

n=−∞

ˆ ∞

0

ˆ
S1

(
2|u ′

n (r) |2 +
(
|n−β|2 + |n+β|2

) u2n (r)
r2

)
rdθdr

! 1
2

∞∑

n=−∞

ˆ ∞

0

1
r2

ˆ
S1

(
|n−β|2 + |n+β|2

)
u2n (r)rdθdr

! |β|2
∞∑

n=−∞

ˆ ∞

0

1
r2

ˆ
S1
u2n (r)rdθdr

= |β|2
ˆ 2

R

|u|2

|x|2 dx.

Also, (1.18) yields
(‖∇Aβu‖L2(R2) + ‖∇Aβu‖L2(R2)

2

)2

!
‖∇Aβu‖2L2(R2) + ‖∇Aβu‖2L2(R2)

4

! |β|2

2

ˆ
R2

|u|2

|x|2 dx, ∀u ∈ C∞
c

(
R2 \ {0}

)
.

(1.19)

Estimate (1.19) is more likely in the spirit of (1.16) in the case p= 2, although with a worse
constant (|β|2/2 instead of |β|2) caused by the first inequality in (1.19) which is too rough.
In any case, in constrast with (1.17), estimate (1.19) shows an improvement in the sharp con-
stant immediately which becomes greater as |β| increases, even for the case β ∈ Z. The same
phenomenon occurs if p (= 2, but it is less trivial.

1.4. Structure of the paper

The paper is organised as follows. In section 2 we briefly present some well-known aspects of
free p-Laplacian and the magnetic-free Hardy inequality in Lp. For the sake of completeness,
we give some short proofs and sketch main ideas of inequality (1.1) and propositions 1.1 and
1.2 pointing out some precise references, since they represent classical results frequently stated
in the literature in a form or another. In section 3 we analyze the magnetic p-Laplacian for
general smooth and closedmagnetic fields and we prove theorems 1.1–1.3.We also show some
very useful preliminary lemmas, i.e. lemmas 3.1–3.4. Finally, in section 4.2 we are devoted
to Aharonov–Bohm fields potentials and we mainly prove theorem 1.4 and a direct proof of
theorem 1.5.

2. The free p-Laplacian

Before going through the main results and proofs, for the sake of clarity, in this section we
discuss the proof of inequality (1.1) and sketch the proofs of propositions 1.1 and 1.2.

8
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Short proof of inequality (1.1). For the sake of completeness next we present a very short
proof for complex-valued functions u valid for any p, which is based on an integration-by-parts
formula, Cauchy–Schwarz and Hölder inequalities. Let u ∈ C∞

c (Rd \ {0}) (this is enough by
density arguments) and then we successively have

ˆ
Rd

|u|p

|x|p dx=
1

d− p

ˆ
Rd
div
(

x
|x|p

)
|u|p dx=− 1

d− p

ˆ
Rd

x
|x|p ·∇(|u|p) dx

=− p
d− p

ˆ
Rd
|u|p−2 x

|x|p ·Re(u∇u) dx

" p
d− p

ˆ
Rd

|u|p−1

|x|p−1 |∇u| dx"
p

d− p

(ˆ
Rd

|u|p

|x|p dx
)1−1/p(ˆ

Rd
|∇u|p dx

)1/p

.

Looking at the extreme terms above after raising the p-power we move the singular terms on
the right-hand side and we get exactly (1.1).

Proof of proposition 1.1 (main ideas). By density arguments, it is enough to build a
sequence {uε}ε>0 in W1,p(Rd) such that

•
´
Rd |∇uε|p dx→ 0, as ε↘ 0;

• uε → 1 a.e. as ε↘ 0 and |uε|" 1 a.e. in Rd.

By direct computations, one can check that the sequence {uε}ε>0 ⊂W1,p(Rd) defined by

uε (x) =






1, |x|" 1/ε,

log(1/(ε2|x|))
log(1/ε) , 1/ε" |x|" 1/ε2,

0, otherwise,

(2.1)

satisfies both properties above. Then from Fatou lemma we have

0"
ˆ
Rd
V dx" liminf

ε↘0

ˆ
Rd
V|uε|p dx" liminf

ε↘0

ˆ
Rd
|∇uε|p dx= 0,

which forces V = 0. So, the proof is completed.

For alternative proofs of proposition 1.1, we refer for instance to [29, example 1.7] or more
precisely to [28, theorem 2].

Proof of proposition 1.2 (sketch). Let us first show that if inequality (1.5) holds it can be
extended to functions u ∈W1,p(Rd). Indeed, let u ∈W1,p(Rd) and, by density considerations,
let {un}n ⊂ C∞

c (Rd) such that un → u in W1,p(Rd) as n→∞. Particularly, we have





un → u, in Lp
(
Rd
)
,

∇un →∇u, in Lp
(
Rd
)
,

un → u, a.e. x ∈ Rd.
(2.2)

In view of Fatou lemma, (2.2) and (1.5) applied to un, we successively have

9
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ˆ
Rd
V|u|p dx+µp,d

ˆ
Rd

|u|p

|x|p dx" liminf
n→∞

ˆ
Rd
V|un|p dx+µp,d liminf

n→∞

ˆ
Rd

|un|p

|x|p dx

" liminf
n→∞

(ˆ
Rd
V|un|p dx+µp,d

ˆ
Rd

|un|p

|x|p dx
)

" liminf
n→∞

ˆ
Rd
|∇un|p dx

=

ˆ
Rd
|∇u|p dx.

Next, let us consider the sequence {uε}ε>0 ⊂W1,p(Rd) defined by

uε (x) = |x|−
d−p
p θε (x) , ε> 0,

where θε is the sequence given by

θε (x) =






log(|x|/ε2)
log(1/ε) if ε2 " |x|" ε,

1 if ε" |x|" 1/ε,

log(1/(ε2|x|))
log(1/ε) if 1/ε" |x|" 1/ε2,

0 otherwise.

(2.3)

By direct computations or, alternatively, following the estimates in the proof of [31, the-
orem 1.3] we can show that

0"
ˆ
Rd
|∇uε|p dx−µp,d

ˆ
Rd

|uε|p

|x|p dx" O

(
1

log 1
ε

)
→ 0,as ε↘ 0.

In consequence, since θε → 1 a.e. as ε↘ 0 we have

0"
ˆ
Rd
V|x|−(d−p) dx" liminf

ε↘0

ˆ
Rd
V|uε|p dx" liminf

ε↘0
O

(
1

log 1
ε

)
= 0,

which forces V = 0 a.e. in Rd. This concludes the proof of proposition 1.2.

3. The magnetic p-Laplacian

This section is concerned with the improved Hardy inequalities for the magnetic p-Laplace
operator −∆A,p and it is mainly devoted to the proofs of theorems 1.1–1.3.

3.1. Preliminary lemmas

Lemma 3.1. For any R̃> 0 let BR̃(0) be the ball of radius R̃ centered at 0 in Rd, Bc
R̃
(0) the

exterior of the ball BR̃(0) and let 1< p<∞.

10
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(1) If p! d then

ˆ
BR̃(0)

|∇u|p dx!
(
p− 1
p

)p 1
R̃p−d

ˆ
BR̃(0)

|u|p

|x|d
(
log R̃

|x|

)p dx, ∀u ∈ C∞
c (BR̃ (0)) .

(2) If p< d then

ˆ
BR̃(0)

∣∣∣∇
(
u|x|

d−p
p

)∣∣∣
p
|x|p−d dx!

(
p− 1
p

)pˆ
BR̃(0)

|u|p

|x|p
(
log R̃

|x|

)p dx, ∀u ∈ C∞
c
(
BR̃ (0)

)
.

(3) If p (= d then

ˆ
Bc
R̃
(0)

|∇u|p dx!
∣∣∣∣
d− p
p

∣∣∣∣
pˆ

Bc
R̃
(0)

|u|p

|x|p dx, ∀u ∈ C∞
c

(
BcR̃ (0)

)
.

(4) If p= d then

ˆ
Bc
R̃
(0)

|∇u|d dx!
(
d− 1
d

)dˆ
Bc
R̃
(0)

|u|d

|x|d
(
log R̃

|x|

)d dx, ∀u ∈ C∞
c

(
BcR̃ (0)

)
.

(5) If p (= d then

ˆ
Bc
R̃
(0)

∣∣∣∇
(
u|x|

d−p
p

)∣∣∣
p
|x|p−d dx!

(
p− 1
p

)pˆ
Bc
R̃
(0)

|u|p

|x|p
(
log R̃

|x|

)p dx, ∀u ∈ C∞
c
(
BcR̃ (0)

)
.

Proof. Parts of this lemma have been already proved in the literature (see e.g. [1] for item (1),
for p= d and radially symmetric and non-decreasing functions). For the sake of clarity, since
our lemma has a more general character, we present the proof in what follows.

Item (1); Writing in spherical coordinates and integrating by parts we get

ˆ
BR̃(0)

|u|p

|x|d
(
log R̃

|x|

)p dx=
ˆ

Sd−1

R̃ˆ

0

|u|p

rd

(
log

R̃
r

)−p

rd−1drdσ

=− 1
1− p

ˆ

Sd−1

R̃ˆ

0

|u|p∂r

((
log

R̃
r

)1−p)
drdσ

=
p

1− p

ˆ

Sd−1

R̃ˆ

0

Re |u|p−2u∂ru
(
log

R̃
r

)1−p

drdσ.

11
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Then, by Hölder inequality we successively obtain

ˆ
BR̃(0)

|u|p

|x|d
(
log R̃

|x|

)p dx" p
p− 1

ˆ

Sd−1

R̃ˆ

0

|u|p−1|∂ru|
(
log

R̃
r

)1−p

drdσ

" p
p− 1




ˆ

Sd−1

R̃ˆ

0

|∂ru|prd−1drdσ





1
p



ˆ

Sd−1

R̃ˆ

0

|u|pr
1−d
p−1

(
log

R̃
r

)−p

drdσ





p−1
p

" p
p− 1

(ˆ
BR̃(0)

|∇u|p dx
) 1

p




ˆ
BR̃(0)

|u|p

|x|
(d−1)p
p−1

(
log R̃

|x|

)p dx





p−1
p

" p
p− 1

(ˆ
BR̃(0)

|∇u|p dx
) 1

p

R̃
p−d
p




ˆ
BR̃(0)

|u|p

|x|d
(
log R̃

|x|

)p dx





p−1
p

.

Now, the proof ends up by removing the Lp log-weighted term on the rhs and then raising the
inequality to the power p.

Item (2); With the transformation w= u|x|
d−p
p (which implies w ∈ Cc(BR̃(0))∩

C∞(BR̃(0) \ {0}), w(0) = 0) it is enough to show that

ˆ
BR̃(0)

|∇w|p |x|p−d dx!
(
p− 1
p

)pˆ
BR̃(0)

|w|p

|x|d
(
log R̃

|x|

)p dx,

Indeed, proceeding as in item (1) we get

ˆ
BR̃(0)

|w|p

|x|d
(
log R̃

|x|

)p dx=
−p
p− 1

ˆ

Sd−1

R̃ˆ

0

Re |w|p−2w∂rw
(
log

R̃
r

)1−p

drdσ

" p
p− 1

ˆ

Sd−1

R̃ˆ

0

|w|p−1|∂rw|
(
log

R̃
r

)1−p

drdσ

" p
p− 1




ˆ

Sd−1

R̃ˆ

0

|∂rw|prp−1drdσ





1
p



ˆ

Sd−1

R̃ˆ

0

|w|p
(
log

R̃
r

)−p
1
r
drdσ





p−1
p

" p
p− 1

(ˆ
BR̃(0)

|∇w|p |x|p−d dx

) 1
p




ˆ
BR̃(0)

|w|p

|x|d
(
log R̃

|x|

)p dx





p−1
p

.

Now, the proof follows by removing the Lp log-weighted term on the rhs and then raising the
inequality to the power p.

Item (3); The proof of this item mimics perfectly the proof of (1.1) in section 2.
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Item (4); The proof of this item mimics perfectly the proof of the first item (1) in the case
p= d. Alternatively, we can apply item (1) and we proceed with the transformation which
maps the ball BR(0) to its exterior, i.e.

BR (0) .→ BcR (0) , x .→ y, y=
x
|x|2R

2.

Computing the metric G= (Gαβ)α,β=1,d induced by the Jacobian matrix
[
∂yk

∂xl

]

k,l=1,d
of the

above transformation we obtain that

Gαβ =
∂yk

∂xα
∂yk

∂xβ
=

R4

|x|4 δαβ .

Then we obtain the determinant |G| := det(G) = (R/|x|)4d and the Jacobian of the transform-

ation is J := |G|1/2 = (R/|x|)2d. Denoting u(y) = u
(
R x

|x|2

)
= v(x) we get

|∇yu(y) |2 =
∂v
∂xα

Gαβ ∂v
∂xβ

=
|x|4

R4 |∇xv(x) |2.

Therefore it is easy to notice that
ˆ
BcR(0)

|∇u(y) |d dy=
ˆ
BR(0)

|∇v(x) |d dx,

and
ˆ
BcR(0)

|u(y) |d

|y|d
(
log |y|

R

)d dy=
ˆ
BR(0)

|v(x) |d

|x|d
(
log R

|x|

)d dx.

Hence we can apply item (1) in the ball BR(0) and then transfer it outside of the ball.
Item (5); The proof mimics perfectly the proof of item (2).

Lemma 3.2. Let d! 2 and 1< p<∞. Assume also that B (= 0 and let A be such that B= dA.
Let R> 1 be fixed and consider the annular domain ΩR := BR(0) \B 1

R
(0). Then we define

µB (R) := inf
u∈W1,p(ΩR),u)=0

´
ΩR

|(∇+ iA)u|p dx´
ΩR

|u|p dx
. (3.1)

Then µB (= 0 on (1,∞).

Proof. First we point out that µB(R) is achieved by, say a function g ∈W1,p(ΩR). In order to
show that, let us consider a sequence {un}n ⊂W1,p(ΩR) such that

‖un‖Lp(ΩR) = 1,
ˆ
ΩR

|∇Aun|p dx↘ µB (R) , n→∞.

SinceA is bounded onΩR then by the diamagnetic inequality (1.9) the sequence {vn}n, given by
vn := |un|, is bounded inW1,p(ΩR). The fact thatW1,p(ΩR) is compactly embedded in Lp(ΩR)
implies that there exists v ∈W1,p(ΩR) such that

{
vn ⇀ g weakly in W1,p (ΩR) ,
vn → g strongly in Lp (ΩR) .

13
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Then we get ‖g‖Lp(ΩR) = 1 and ∂xjvn ⇀∂xjg in L
p(ΩR) for any j = 1,d. Applying the weakly

lower semi-continuity property of the Lp norm (see, e.g. [10, section 3.1, p 90]) and the dia-
magnetic inequality we get

µB (R)" ‖∇g‖pLp(ΩR)
" liminf

n→∞
‖∇vn‖pLp(ΩR)

" lim
n→∞

ˆ
ΩR

|∇Aun|p dx= µB (ΩR) .

So, µ(R) is attained by a non-trivial g.
Assume that µB(R) = 0 for any R> 1. Then ‖(∇+ iA)g‖Lp(ΩR) = 0. On the other hand,

from the diamagnetic inequality this leads to

0= |(∇+ iA)g(x) |! |∇|g(x) ||! 0, a.e. x ∈ ΩR,

which implies that ∇|g|= 0 a.e. in ΩR. We obtain that |g|= g0 = constant. Without losing
the generality we may assume that g0 = 1. Let ϕ be a smooth function such that g= eiϕ.
Since∇Ag= 0 we have∇A(eiϕ) = 0 which is equivalent with (i∇ϕ + iA)eiϕ = 0. Therefore,
−∇ϕ = A on ΩR for any R> 1, which implies,by letting R→∞, that A is exact on the
punctured space Rd \ {0}. Since B is smooth hence B= 0 on Rd. Contradiction. The proof
is completed.

3.2. Proof of theorem 1.1

Roughly speaking, it is based on lemmas 3.1 and 3.2, a cut-off argument and the diamagnetic
inequality.

Let us fix a constant R> 1 such that µB(R)> 0 (this is possible in view of lemma 3.2).
Next we introduce a radially symmetric cut-off function η ∈ C∞(Rd) with 0" η " 1 such

that η ≡ 1 on Ωc
R and η ≡ 0 on BR2(0) \BR1(0), where R1,R2 are two constants such that 1

R <

R1 < 1< R2 < R. Therefore, we have that supp(|∇η|)⊂ ΩR and supp(1− η)⊂ ΩR.
Then we successively have
ˆ
Rd

|u|p

|x|d (| log |x||p+ |x|p−d)
dx

=

ˆ
Rd

|(1− η)u+ ηu|p

|x|d (| log |x||p+ |x|p−d)
dx

" 2p−1
(ˆ

Rd

|(1− η)u|p

|x|d (| log |x||p+ |x|p−d)
dx+

ˆ
Rd

|ηu|p

|x|d (| log |x||p+ |x|p−d)
dx
)

= 2p−1

(ˆ
ΩR

|(1− η)u|p

|x|d (| log |x||p+ |x|p−d)
dx+

ˆ
B1(0)

|ηu|p

|x|d (| log |x||p+ |x|p−d)
dx

+

ˆ
Bc1(0)

|ηu|p

|x|d (| log |x||p+ |x|p−d)
dx

)

:= 2p−1 (I1 (u)+ I2 (u)+ I3 (u)) . (3.2)

First we have from lemma 3.2:

I1 (u)"
ˆ
ΩR

|(1− η)u|p

|x|p dx" Rp
ˆ
ΩR

|u|p dx" Rp

µB (R)

ˆ
ΩR

|∇Au|p dx. (3.3)
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By lemma 3.1, item (1) with the choice R̃= 1 we have

I2 (u)"
ˆ
B1(0)

|ηu|p

|x|d| log |x||p dx

"
(

p
p− 1

)pˆ
B1(0)

|∇(η|u|) |p dx

" 2p−1
(

p
p− 1

)pˆ
B1(0)

(|∇η|p|u|p+ |η∇(|u|) |p) dx

" 2p−1
(

p
p− 1

)p


‖∇η‖pL∞(Rd)

ˆ
B1(0)\B 1

R
(0)

|u|p dx+
ˆ
B1(0)

|∇(|u|) |p dx





" 2p−1
(

p
p− 1

)p
(
‖∇η‖pL∞(Rd)

ˆ
ΩR(0)

|u|p dx+
ˆ
B1(0)

|∇(|u|) |p dx
)
. (3.4)

Applying lemma 3.2 and the diamagnetic inequality in (3.4) we get

I2 (u)" 2p−1
(

p
p− 1

)p
(
‖∇η‖pL∞(Rd)

µB (R)

ˆ
ΩR

|∇Au|p dx+
ˆ
B1(0)

|∇Au|p dx
)
. (3.5)

Items (3)–(4) in lemma 3.1 and diamagnetic inequality lead to

I3 (u)"






´
Bc1(0)

|u|p
|x|d| log |x||p dx, p= d

´
Bc1(0)

|u|p
|x|p dx, p> d

"






(
p

p−1

)p ´
Bc1(0)

|∇Au|p dx, p= d
(

p
p−d

)p ´
Bc1(0)

|∇Au|p dx, p> d.
(3.6)

Combining (3.2), (3.3), (3.6) and (3.5) we finally obtain
ˆ
Rd

|u|p

|x|d (| log |x||p+ |x|p−d)
dx" CB,p,d

ˆ
Rd
|∇Au|p dx,

where

CB,p,d =






2p−1

(
Rp

µB(R)
+ 2p−1

(
p

p−1

)p(‖∇η‖p
L∞(Rd)

µB(R)
+ 1
)
+
(

p
p−1

)p)
, p= d

2p−1

(
Rp

µB(R)
+ 2p−1

(
p

p−1

)p(‖∇η‖p
L∞(Rd)

µB(R)
+ 1
)
+
(

p
p−d

)p)
, p> d.

The proof of theorem 1.1 is finished now. #
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3.3. Proof of theorem 1.2

The proof is divided in three steps.
Step 1.We prove the following identity:

Lemma 3.3. Let 1< p< d. We have for all complex-valued functions u ∈ C∞
c (Rd) thatˆ

Rd

|∇u|p dx−
(
d− p
p

)pˆ

Rd

|u|p

|x|p
dx=

ˆ

Rd

Cp
(
∇u, |x|−

d−p
p ∇

(
u |x|

d−p
p

))
dx, (3.7)

where the function Cp(·, ·) si given by

Cp (x,y) := |x|p− |x− y|p− p |x− y|p−2 Re(x− y) · y. (3.8)

When preparing the revised version of the paper we were brought to our attention that the
identity in [23, theorem 1] is very similar to (3.7) for real-valued functions u and for the full
gradient ∇u replaced with radial derivative ∂ru := x·∇u

|x| . Since our identity (3.7) extends to
complex-valued functions, we give the detailed proof in what follows.

Proof. With the transformation u(x) = w(x)ϕ(|x|) and ϕ(r) = r−
d−p
p we have

ˆ

Rd

Cp
(
∇u, |x|−

d−p
p ∇

(
u |x|

d−p
p

))
dx

=

ˆ

Rd

Cp (∇u,ϕ(|x|)∇v) dx

=

ˆ

Rd

|∇u|p dx−
ˆ

Rd

|wϕ ′ (|x|)|p dx

− p
ˆ

Rd

|wϕ ′ (|x|)|p−2 Rewϕ ′ (|x|) x
|x| ·ϕ(|x|)∇w dx.

Switching to spherical coordinates, we have

I : =−
ˆ

Rd

|wϕ ′ (|x|)|p−2 Rewϕ ′ (|x|) x
|x| ·ϕ(|x|)∇w dx

=−
ˆ

Sd−1

∞̂

0

Re |wϕ ′|p−2wϕ ′ϕ∂rwrd−1drdσ

=

ˆ

Sd−1

∞̂

0

Re∂r
(
|wϕ ′|p−2wϕ ′ϕrd−1

)
wdrdσ

=

ˆ

Sd−1

∞̂

0

Re∂r
(
|w|p−2wϕ |ϕ ′|p−2

ϕ ′rd−1
)
wdrdσ

=

ˆ

Sd−1

∞̂

0

Rew(p− 1) |w|p−2 ∂rwϕ |ϕ ′|p−2
ϕ ′rd−1drdσ
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+

ˆ

Sd−1

∞̂

0

Rew |w|p−2wϕ ′ |ϕ ′|p−2
ϕ ′rd−1drdσ

+

ˆ

Sd−1

∞̂

0

Rew |w|p−2wϕ
(
|ϕ ′|p−2

ϕ ′rd−1
) ′

drdσ.

= (1− p) I+
ˆ

Sd−1

∞̂

0

|wϕ ′|p rd−1drdσ+
ˆ

Sd−1

∞̂

0

Rew |w|p−2wϕ
(
|ϕ ′|p−2

ϕ ′rd−1
) ′

drdσ.

That is

pI−
ˆ

Sd−1

∞̂

0

|wϕ ′|p rd−1drdσ

=

ˆ

Sd−1

∞̂

0

Rew |w|p−2wϕ
(
|ϕ ′|p−2

ϕ ′rd−1
) ′
rd−1drdσ

=

ˆ

Sd−1

∞̂

0

|w|pϕ
(
|ϕ ′|p−2

ϕ ′rd−1
) ′

drdσ

=−
ˆ

Sd−1

∞̂

0

|w|p |ϕ|p 1
rp

(
d− p
p

)p

rd−1drdσ.

Therefore, identity (3.7) is finally obtained.

Step 2.We extend the identity in lemma 3.3 to magnetic gradients:

Lemma 3.4. Let 1< p< d. We have for all complex-valued functions u ∈ C∞
c

(
Rd
)
that

ˆ

Rd

|∇Au|p dx−
(
d− p
p

)pˆ

Rd

|u|p

|x|p
dx=

ˆ

Rd

Cp
(
∇Au, |x|−

d−p
p ∇A

(
u |x|

d−p
p

))
dx.

Proof. It is enough to show that

|∇Au|p−Cp
(
∇Au, |x|−

d−p
p ∇A

(
u |x|

d−p
p

))
= |∇u|p−Cp

(
∇u, |x|−

d−p
p ∇

(
u |x|

d−p
p

))
.

Note that |x|p−Cp (x,y) = |x− y|p+ p |x− y|p−2 Re(x− y) · y, we have

|∇u|p−Cp
(
∇u, |x|−

d−p
p ∇

(
u |x|

d−p
p

))
=
∣∣∣∇u− |x|−

d−p
p ∇

(
u |x|

d−p
p

)∣∣∣
p

+
∣∣∣∇u− |x|−

d−p
p ∇

(
u |x|

d−p
p

)∣∣∣
p−2

Re
(
∇u− |x|−

d−p
p ∇

(
u |x|

d−p
p

))
· |x|−

d−p
p ∇

(
u |x|

d−p
p

)
.
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Similarly

|∇Au|p−Cp
(
∇Au, |x|−

d−p
p ∇A

(
u |x|

d−p
p

))

=
∣∣∣∇Au− |x|−

d−p
p ∇A

(
u |x|

d−p
p

)∣∣∣
p

+
∣∣∣∇Au− |x|−

d−p
p ∇A

(
u |x|

d−p
p

)∣∣∣
p−2

Re
(
∇Au− |x|−

d−p
p ∇A

(
u |x|

d−p
p

))

· |x|−
d−p
p ∇A

(
u |x|

d−p
p

)
.

We note that

∇Au− |x|−
d−p
p ∇A

(
u |x|

d−p
p

)

=∇u+ iAu− |x|−
d−p
p

(
∇
(
u |x|

d−p
p

)
+ iAu |x|

d−p
p

)

=∇u− |x|−
d−p
p ∇

(
u |x|

d−p
p

)
.

Therefore, we just need to show that

Re
(
∇u− |x|−

d−p
p ∇

(
u |x|

d−p
p

))
·
(
∇A

(
u |x|

d−p
p

)
−∇

(
u |x|

d−p
p

))
= 0.

Equivalently

−Re |x|−
d−p
p u |x|

d−p
p −2 x · iAu |x|

d−p
p = 0,

which is true since A is real vector potential.

Step 3. Now, if we prove the following algebraic inequality: x,y ∈ Cd :

Cp (x,y) = |x|p− |x− y|p− p |x− y|p−2 Re(x− y) · y! cp |y|p ,

with

cp = inf
(s,t)∈R2\{(0,0)}

[
t2 + s2 + 2s+ 1

] p
2 − 1− ps

[t2 + s2]
p
2

∈ (0,1] ,when p! 2,

we complete the proof of the theorem.

Proof. Let x− y= a+ ib and y= c+ id with a,b,c,d ∈ Rd. Then

|x|2 = |a+ c|2 + |b+ d|2

= |a|2 + |b|2 + 2(a · c+ b · d)+ |c|2 + |d|2

|x− y|2 = |a|2 + |b|2

|y|2 = |c|2 + |d|2 .
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Then

Cp (x,y) =
∣∣∣|a|2 + |b|2 + 2(a · c+ b · d)+ |c|2 + |d|2

∣∣∣
p
2

−
∣∣∣|a|2 + |b|2

∣∣∣
p
2 − p

∣∣∣|a|2 + |b|2
∣∣∣
p
2−1

(a · c+ b · d) .

If |a|2 + |b|2 = 0 or |c|2 + |d|2 = 0, then it is obvious. If |a|2 + |b|2 (= 0 and |c|2 + |d|2 (= 0,
then we need to prove that

cp = inf




[c]c

∣∣∣|a|2 + |b|2 + 2(a · c+ b · d)+ |c|2 + |d|2
∣∣∣
p
2

−
∣∣∣|a|2 + |b|2

∣∣∣
p
2 − p

∣∣∣|a|2 + |b|2
∣∣∣
p
2−1

(a · c+ b · d)





∣∣∣|c|2 + |d|2
∣∣∣
p
2

> 0.

We set s= a·c+b·d
|a|2+|b|2 ,

|c|2+|d|2
|a|2+|b|2 = s2 + t2 (since s2 = (a·c+b·d)2

(|a|2+|b|2)2
" |c|2+|d|2

|a|2+|b|2 ). Then

cp = inf
(s,t)∈R2\{(0,0)}

[
t2 + s2 + 2s+ 1

] p
2 − 1− ps

[t2 + s2]
p
2

.

We show that 0< cp " 1. Indeed, choose s=− 1
2 , and let t→∞, we deduce that cp " 1. To

see that cp > 0, we note that
[
t2 + s2 + 2s+ 1

] p
2 ! 1+

(
t2 + s2 + 2s

) p
2 > 1+ ps for all (s, t) ∈

R2 \ {(0,0)} by Bernoulli’s inequality. Also, when t2 + s2 →∞, cp → 1. Finally, when t2 +

s2 → 0, then s→ 0. Let Np := infx∈R+

[
(x+ 1)

p
2 − x

p
2

]
and since p! 2 we have Np ! 1. Then

when s>− 1
2 we get

[
t2 + s2 + 2s+ 1

] p
2 ! [2s+ 1]

p
2 +Np

[
t2 + s2

] p
2 ! 1+ ps+Np

[
t2 + s2

] p
2 .

Hence,

lim
t2+s2→0

[
t2 + s2 + 2s+ 1

] p
2 − 1− ps

[t2 + s2]
p
2

! 1.

Proposition 3.1. If p ∈ (1,2) then cp = 0.

Proof. ByBernoulli inequality it is trivial that cp ! 0. On the other hand, taking s= twe obtain

cp " inf
s∈R\{0}

(
2s2 + 2s+ 1

) p
2 − 1− ps

2
p
2 sp

.

Considering the function f(x) = (x+ 1)
p
2 ,x! 0, and expanding in Taylor series we have f(x) =

1+ p
2x+

p
4 (

p
2 − 1)x2 +O(x3), as x→ 0. This implies

(
2s2 + 2s+ 1

) p
2 − 1− ps

sp
=
p2

2
s2−p+O

(
s3−p)→ 0,as s→ 0.

Thus cp = 0.
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3.4. Proof of theorem 1.3

With the same election of η as in section 3.2 and the transformation w= u|x|
d−p
p we have

ˆ
Rd

|u|p

|x|p(| log |x||p+ 1)
dx

=

ˆ
Rd

|(1− η)u+ ηu|p

|x|p(| log |x||p+ 1)
dx

" 2p−1
(ˆ

Rd

|(1− η)u|p

|x|p(| log |x||p+ 1)
dx+

ˆ
Rd

|ηu|p

|x|p(| log |x||p+ 1)
dx
)

" 2p−1
(ˆ

ΩR

|(1− η)u|p

|x|p(| log |x||p+ 1)
dx+

ˆ
B1(0)

|ηu|p

|x|p(| log |x||p+ 1)
dx

+

ˆ
Bc1(0)

|ηu|p

|x|p(| log |x||p+ 1)
dx
)

" 2p−1
(ˆ

ΩR

|u|p

|x|p(| log |x||p+ 1)
dx+

ˆ
B1(0)

|ηu|p

|x|p(| log |x||p+ 1)
dx

+

ˆ
Bc1(0)

|ηu|p

|x|p(| log |x||p+ 1)
dx
)

= 2p−1
(ˆ

ΩR

|ηw|p

|x|d(| log |x||p+ 1)
dx+

ˆ
B1(0)

|ηw|p

|x|d(| log |x||p+ 1)
dx

+

ˆ
Bc1(0)

|ηw|p

|x|d(| log |x||p+ 1)
dx
)

:= 2p−1(J1(u)+ J2(u)+ J3(u)). (3.9)

First we have from lemma 3.2 that

J1 (u)"
ˆ
ΩR

|w|p

|x|d dx" Rd
ˆ
ΩR

|w|p dx" Rd

µB (R)

ˆ
ΩR

|∇Aw|p dx

" R2d−p

µB (R)

ˆ
ΩR

|∇Aw|p|x|p−d dx. (3.10)

By lemma 3.1, item (2) with the choice R̃= 1, we have

J2 (u)"
ˆ
B1(0)

|ηw|p

|x|d|| log |x||p
dx

"
(

p
p− 1

)pˆ
B1(0)

|∇(η|w|) |p|x|p−d dx

" 2p−1
(

p
p− 1

)pˆ
B1(0)

(
|∇η|p|w|p+ |η∇(|w|) |p

)
|x|p−d dx

" 2p−1
(

p
p− 1

)p


‖∇η‖pL∞(Rd)

ˆ
B1(0)\B 1

R
(0)

|w|p|x|p−d dx+
ˆ
B1(0)

|∇(|w|) |p|x|p−d dx





" 2p−1
(

p
p− 1

)p(
‖∇η‖pL∞(Rd)

ˆ
ΩR(0)

|w|p|x|p−d dx+
ˆ
B1(0)

|∇(|w|) |p|x|p−d dx

)
.
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Applying lemma 3.2 and the diamagnetic inequality from above we get

J2 (u)" 2p−1
(

p
p− 1

)p(Rd−p‖∇η‖pL∞(Rd)

µB (R)

ˆ
ΩR

|∇Aw|p dx+
ˆ
B1(0)

|∇Aw|p|x|p−d dx

)

" 2p−1
(

p
p− 1

)p



R2(d−p)‖∇η‖pL∞(Rd)

µB (R)

ˆ
ΩR

|∇Aw|p|x|p−d dx+
ˆ
B1(0)

|∇Aw|p|x|p−d dx





" 2p−1
(

p
p− 1

)p



R2(d−p)‖∇η‖pL∞(Rd)

µB (R)
+ 1




ˆ
BR

|∇Aw|p|x|p−d dx. (3.11)

Similarly, by lemma 3.1, item (5), we get

J3 (u)"
ˆ
Bc1(0)

|ηw|p

|x|d| log |x||p
dx

"
(

p
p− 1

)pˆ
Bc1(0)

|∇(η|w|) |p|x|p−d dx

" 2p−1
(

p
p− 1

)pˆ
Bc1(0)

(
|∇η|p|w|p+ |η∇(|w|) |p

)
|x|p−d dx

" 2p−1
(

p
p− 1

)p(
‖∇η‖pL∞(Rd)

ˆ
BR(0)\B1(0)

|w|p|x|p−d dx+
ˆ
Bc1(0)

|∇(|w|) |p|x|p−d dx

)

" 2p−1
(

p
p− 1

)p(
‖∇η‖pL∞(Rd)

ˆ
ΩR

|w|p|x|p−d dx+
ˆ
Bc1(0)

|∇(|w|) |p|x|p−d dx

)
.

Applying lemma 3.2 and the diamagnetic inequality from above we get

J3 (u)" 2p−1
(

p
p− 1

)p(Rd−p‖∇η‖pL∞(Rd)

µB (R)

ˆ
ΩR

|∇Aw|p dx+
ˆ
Bc1(0)

|∇Aw|p|x|p−d dx

)

" 2p−1
(

p
p− 1

)p



R2(d−p)‖∇η‖pL∞(Rd)

µB (R)

ˆ
ΩR

|∇Aw|p|x|p−d dx+
ˆ
Bc1(0)

|∇Aw|p|x|p−d dx





" 2p−1
(

p
p− 1

)p



R2(d−p)‖∇η‖pL∞(Rd)

µB (R)
+ 1




ˆ
Rd

|∇Aw|p|x|p−d dx. (3.12)

Combining (3.9)–(3.12) and theorem 1.2 we finally obtain

ˆ
Rd

|u|p

|x|p (| log |x||p+ 1)
dx" C̃B,p,d

ˆ
Rd
|∇Aw|p|x|p−d dx,

= C̃B,p,d

ˆ
Rd
|∇A

(
u|x|

d−p
p

)
|p|x|p−d dx,

" c(p) C̃B,p,d

(ˆ
Rd
|∇u|p dx−µp,d

ˆ
Rd

|u|p

|x|p dx
)
,
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where c(p) is the constant in (1.11) and

C̃p,B,d := 2p−1

(
R2d−p

µB (R)
+ 2p

(
p

p− 1

)p
(
R2(d−p)‖∇η‖pL∞(Rd)

µB (R)
+ 1

))
.

Thus the proof of theorem 1.3 is completed now with CB,p,d := c(p)C̃B,p,d. #

4. Aharonov–Bohm magnetic fields

4.1. Proof of theorem 1.4

Proof. By using polar coordinates we have

ˆ

R2

|∇Au|p dx=

∞̂

0

2πˆ

0

[
|∂ru|2 +

|∂ϕu+ iβu|2

r2

] p
2

dϕrdr.

Consider the Lq-spaces on (0,2π)× (0,∞) with the measure dϕrdr equipped with

‖w‖q =




∞̂

0

2πˆ

0

|w|q dϕrdr




1 q

.

Then




ˆ

R2

|∇Au|p dx





2
p

=




∞̂

0

2πˆ

0

[
|∂ru|2 +

|∂ϕu+ iβu|2

r2

] p
2

dϕrdr





2
p

=

∥∥∥∥∥|∂ru|
2 +

|∂ϕu+ iβu|2

r2

∥∥∥∥∥
p
2

.

Now, by applying the reverse Minkowski inequality that asserts that when q< 1 :

‖f+ g‖q ! ‖f‖q+ ‖g‖q

when both f and g are non-negative, we get (since 0< p
2 < 1)




ˆ

R2

|∇Au|p dx





2
p

=

∥∥∥∥∥|∂ru|
2 +

|∂ϕu+ iβu|2

r2

∥∥∥∥∥
p
2

!
∥∥∥|∂ru|2

∥∥∥
p
2

+

∥∥∥∥∥
|∂ϕu+ iβu|2

r2

∥∥∥∥∥
p
2

=




∞̂

0

2πˆ

0

|∂ru|p dϕrdr





2
p

+




∞̂

0

2πˆ

0

|∂ϕu+ iβu|p

rp
dϕrdr





2
p

.
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So

ˆ

R2

|∇Au|p dx!








∞̂

0

2πˆ

0

|∂ru|p dϕrdr





2
p

+




∞̂

0

2πˆ

0

|∂ϕu+ iβu|p

rp
dϕrdr





2
p




p
2

.

It is easy to see that

∞̂

0

2πˆ

0

|∂ru|p dϕrdr=
ˆ

R2

∣∣∣∣
x
|x| ·∇u

∣∣∣∣
p

dx

!
(
2− p
p

)pˆ

R2

|u|p

|x|p
dx.

Now let

λ(β,p) := inf
u∈W1,p(0,2π ),u(0)=u(2π)

2π́

0
|∂ϕu+ iβu|p dϕ

2π́

0
|u|p dϕ

.

We claim that λ(β,p)> 0. Therefore

∞̂

0

2πˆ

0

|∂ϕu+ iβu|p

rp
dϕrdr! λ(β,p)

∞̂

0

2πˆ

0

|u|p

rp
dϕrdr

= λ(β,p)
ˆ

R2
|u|p

|x|p dx.

Hence

ˆ

R2

|∇Au|p dx!








∞̂

0

2πˆ

0

|∂ru|p dϕrdr





2
p

+




∞̂

0

2πˆ

0

|∂ϕu+ iβu|p

rp
dϕrdr





2
p




p
2

!
[(

2− p
p

)2

+λ(β,p)
2
p

] p
2 ˆ

R2

|u|p

|x|p
dx

>

(
2− p
p

)pˆ

R2

|u|p

|x|p
dx,

and the proof finishes.
Now, it remains to show λ(β,p)> 0.
Indeed, assume by contradiction that there exists a sequence {un}n ⊂W1,p ([0,2π]) such

that
´ 2π
0 |un|p dϕ = 2π and

´ 2π
0 |∂ϕun+ iβun|p dϕ→ 0. Hence,

´ 2π
0 |∂ϕun|p dϕ is bounded.
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As a consequence, un ⇀ u weakly in W1,p ([0,2π]). Note that because of the embed-
ding W1,p ([0,2π]) ↪→ C0,1− 1

p ([0,2π]), we have that u ∈ C0,1− 1
p ([0,2π]). We can also get

that un → u strongly in Lp ([0,2π]) because of the compact embedding W1,p ([0,2π]) ↪→↪→
Lp ([0,2π]), and that ∂ϕun ⇀∂ϕu weakly in Lp ([0,2π]). So, ∂ϕun+ iβun ⇀∂ϕu+ iβu
weakly in Lp ([0,2π]). As a consequence of the lower semi-continuity property of the
Lp norm,

2πˆ

0

|∂ϕu+ iβu|p dϕ" liminf
n→∞

2πˆ

0

|∂ϕun+ iβun|p dϕ = 0.

That is u= e−iβϕ. Now, since un ⇀ u weakly in W1,p ([0,2π]), by Mazur’s lemma,
there exists a sequence {vn}n made up of convex combinations of the un’s that con-
verges strongly to u. Therefore, by the embedding W1,p ([0,2π]) ↪→ C0,1− 1

p ([0,2π]), we
have ‖vn− u‖

C
0,1− 1

p ([0,2π])
$ ‖vn− u‖W1,p([0,2π]) → 0. As a consequence, vn (0)→ u(0) and

vn (2π)→ u(2π). But since un (0) = un (2π) for all n, we get vn (0) = vn (2π) for all n. Hence,
u(0) = u(2π) which is impossible since β /∈ Z. Therefore, λ(β,p)> 0.

4.2. Direct proof of theorem 1.5

First we denote ∂A1 := ∂x1 + iβA1 and ∂A2 := ∂x2 + iβA2, where A= (A1,A2) :=
(

x2
|x|2 ,

−x1
|x|2

)
.

Let t>− 1
2β be a real number which will be well specified later. Successively we have the

identity

(1+βt)
ˆ
R2

|u|p

|x|p dx=
ˆ
R2

[
∂A1

(
1

2− p
x1
|x|p − it

x2
|x|p

)
+ ∂A2

(
1

2− p
x2
|x|p + it

x1
|x|p

)]
|u|p dx

= Re
ˆ
R2
|u|p−2

{(
−p
2− p

x1
|x|p − it

x2
|x|p

)(
1
2
∂x1 |u|

2 + iβ
x2
|x|2 |u|

2
)

+

(
−p
2− p

x2
|x|p + it

x1
|x|p

)(
1
2
∂x2 |u|

2 − iβ
x1
|x|2 |u|

2
)}

dx

= Re
ˆ
R2
|u|p−2

{(
−p
2− p

x1
|x|p − it

x2
|x|p

)(
1
2
(ū∂x1u+ u∂x1 ū)+ iβ

x2
|x|2 |u|

2
)

+

(
−p
2− p

x2
|x|p + it

x1
|x|p

)(
1
2
(ū∂x2u+ u∂x2 ū)− iβ

x1
|x|2 |u|

2
)}

dx.

(4.1)

So,

(1+βt)
ˆ
R2

|u|p

|x|p dx= Re
ˆ
R2

|u|p−2
{(

−p
2− p

x1
|x|p − it

x2
|x|p

)(
1
2
ū∂A1u+

1
2
u∂A1 ū

)

+

(
−p
2− p

x2
|x|p + it

x1
|x|p

)(
1
2
ū∂A2u+

1
2
u∂A2 ū

)}
dx

= Re
ˆ
R2

|u|p−2
(

−p
2− p

x
|x|p − itA

1
|x|p−2

)
·
(
1
2
ū∇Aβu+

1
2
u∇Aβ ū

)
dx.

(4.2)
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Applying the Cauchy–Schwarz and Hölder inequalities we obtain

(1+βt)
ˆ
R2

|u|p

|x|p dx

" 1
2

ˆ
R2

|u|p−2

|x|p−2

∣∣∣∣
−p
2− p

x
|x|2 − itA

∣∣∣∣
(
|ū||∇Aβu|+ |u||∇Aβ ū|

)
dx

=
1
2

√(
p

2− p

)2

+ t2
ˆ
R2

|u|p−1

|x|p−1

(
|∇Aβu|+ |∇Aβ ū|

)
dx

" 1
2

√(
p

2− p

)2

+ t2
(ˆ

R2

|u|p

|x|p dx
) p−1

p

{(ˆ
R2
|∇Aβu|p dx

) 1
p

+

(ˆ
R2
|∇Aβ ū|p dx

) 1
p

}
.

Dividing properly the common terms above we get

1+βt√(
p

2−p

)2
+ t2

(ˆ
R2

|u|p

|x|p dx
) 1

p

" ‖∇Aβu‖Lp(R2) + ‖∇Aβ ū‖Lp(R2)

2
, ∀t>− 1

β
. (4.3)

Considering the function

f(t) :=
1+βt√(
p

2−p

)2
+ t2

,

we obtain that

f ′ (t) =
β
(

p
2−p

)2
− t

((
p

2−p

)2
+ t2

) 5
2

.

Notice that t= β
(

p
2−p

)2
is a maximum point of f and since

f

(
β

(
p

2− p

)2
)

=

√
(2− p)2 +β2p2

p
,

from (4.3) we finally obtain

ˆ
R2

|u|p

|x|p dx"



 p√
(2− p)2 +β2p2




p(‖∇Aβu‖Lp(R2) + ‖∇Aβ ū‖Lp(R2)

2

)p

. (4.4)
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