
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

C. R. Acad. Sci. Paris, Ser. I 351 (2013) 437–440

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical Analysis/Differential Geometry

Spectral properties of Schrödinger operators on compact
manifolds: Rigidity, flows, interpolation and spectral estimates

Propriétés spectrales d’opérateurs de Schrödinger sur des variétés
compactes : Rigidité, flots, interpolation et estimations spectrales

Jean Dolbeault a, Maria J. Esteban a, Ari Laptev b, Michael Loss c

a Ceremade (UMR CNRS 7534), Université Paris-Dauphine, place du Maréchal-de-Lattre-de-Tassigny, 75775 Paris cedex 16, France
b Department of Mathematics, Imperial College London, Huxley Building, 180 Queen’s Gate, SW7 2AZ, UK
c School of Mathematics, Skiles Building, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 March 2013
Accepted 1 July 2013
Available online 31 July 2013

Presented by the Editorial Board

This note is devoted to optimal spectral estimates for Schrödinger operators on compact
connected Riemannian manifolds without boundary. These estimates are based on the use
of appropriate interpolation inequalities and on some recent rigidity results for nonlinear
elliptic equations on those manifolds.
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r é s u m é

Cette note est consacrée à des estimations spectrales optimales pour des opérateurs de
Schrödinger sur des variétés riemaniennes compactes et simplement connexes, sans bord.
Ces estimations sont basées sur certaines inégalités d’interpolation et sur un résultat récent
de rigidité pour des équations elliptiques non linéaires sur ces variétés.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Spectral properties of Schrödinger operators on the sphere

We start by briefly reviewing some results that have been obtained in [4]. Let us define 2∗ := 2d
d−2 if d � 3, and 2∗ := ∞

if d = 1 or 2. We denote by �g the Laplace–Beltrami operator on the unit sphere Sd ⊂ Rd+1. It is well known (see [2]) that
the equation:

−�g u + λ

q − 2
u = uq−1

has only constant solutions as long as q ∈ (2,2∗) and λ � d. See [3] for a review and various related results. Assume that
the measure on Sd is the one induced by Lebesgue’s measure on Rd+1. This convention differs from the one of [4]. The
inequality:

‖∇u‖2
L2(Sd)

+ α‖u‖2
L2(Sd)

� μ(α)‖u‖2
Lq(Sd)

∀u ∈ H1(Sd),
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for any q ∈ (2,2∗) can be established by standard variational methods. According to [4], the optimal function μ : R+ →
R+ is concave, increasing, and such that μ(α) = κα for any α � d

q−2 , μ(α) < κα for α > d
q−2 where κ := |Sd|1−2/q is a

normalization factor and:

μ(α) ∼ Kq,d α1−ϑ as α → +∞, where ϑ := d
q − 2

2q
,

Kq,d := inf
v∈H1(Rd)\{0}

‖∇v‖2
L2(Rd)

+ ‖v‖2
L2(Rd)

‖v‖2
Lq(Rd)

. (1)

Let us define p = q
q−2 so that p ∈ (1,+∞) if d = 1 and p ∈ ( d

2 ,+∞) if d � 2. If we denote by μ �→ α(μ) the inverse function
of α �→ μ(α) and by λ1(−�g − V ) the lowest (nonpositive) eigenvalue of −�g − V , then we have the estimate

∣∣λ1(−�g − V )
∣∣ � α

(‖V ‖Lp(Sd)

) ∀V ∈ Lp(
Sd),

for any nonnegative V ∈ Lp(Sd). Moreover we have α(μ)p−d/2 = L1
p− d

2 ,d
μp(1 + o(1)) as μ → +∞ where L1

γ ,d :=
(Kq,d)

−(γ +d/2) . Equality is achieved for any μ > 0 by some nonnegative V , which is constant if and only if μ � d
2 (p − 1).

The case q ∈ (1,2) can also be covered and we refer to [4] for further details. This case leads to estimates from below
for the first eigenvalue of the operator −�g + W , where W is a positive potential.

2. A rigidity result on compact manifolds and a subcritical interpolation inequality

From here on we shall assume that (M, g) is a smooth compact connected Riemannian manifold of dimension d � 1,
without boundary, and let �g be the Laplace–Beltrami operator on M. We shall denote by dv g the volume element and
by R the Ricci tensor. Let λ1 be the lowest positive eigenvalue of −�g .

For such manifolds, a new rigidity result has been recently established in [5], thus extending a series of results of [6,2,9,
1,8]. In order to state this result, let us define the quantities:

θ = (d − 1)2(p − 1)

d(d + 2) + p − 1
and Qgu := Hg u − g

d
�g u − (d − 1)(p − 1)

θ(d + 3 − p)

[∇u ⊗ ∇u

u
− g

d

|∇u|2
u

]

where Hg u denotes Hessian of u, and

Λ
 := inf
u∈H2(M)\{0}

(1 − θ)
∫
M (�g u)2 dv g + θd

d−1

∫
M [‖Qg u‖2 + R(∇u,∇u)] dv g∫

M |∇u|2 dv g
. (2)

It is not difficult to see that Λ
 � λ1.

Theorem 1. (Cf. [5, Theorem 3].) Assume that Λ
 is strictly positive. Then for any q ∈ (1,2)∪ (2,2∗) and any λ ∈ (0,Λ
), the equation:

−�g v + λ

q − 2

(
v − vq−1) = 0

has 1 as its unique positive solution in C2(M).

Note that in the particular case M = Sd , Λ
 = λ1(−�g) = d. The proof relies on the nonlinear flow

ut = u2−2β

(
�gu + (

1 + β(q − 2)
) |∇u|2

u

)
, β = (d + 2)(d + 3 − p)θ

(d − 1)2(p − 1)2 − (d + 2)2(p − 2)θ
, (3)

that can also be used to prove the following A–B-type interpolation inequality (see [2,7]). Let us define:

κ := volg(M)1−2/q.

Theorem 2. (Cf. [5, Theorem 4].) For any q ∈ (1,2) ∪ (2,2∗] if d � 3, q ∈ (1,2) ∪ (2,∞) if d = 1 or 2, the inequality:

‖∇v‖2
L2(M)

� Λ

q − 2

[
κ‖v‖2

Lq(M) − ‖v‖2
L2(M)

] ∀v ∈ H1(M)

holds for some optimal Λ ∈ [Λ
,λ1] if Λ
 > 0. Moreover, if Λ
 < λ1 , then we have Λ
 < Λ � λ1 .
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The above results hold true because the flow (3) contracts:

F[u] :=
∫
M

∣∣∇(
uβ

)∣∣2
dv g + Λ


q − 2

[ ∫
M

u2β dv g − κ

( ∫
M

uβq dv g

)2/q]
.

The above choices for θ and β are optimal for this contraction property: see [5].
As a consequence and exactly as in the case of the sphere, we get the first result of this note.

Proposition 3. Assume that q ∈ (2,2∗) if d � 3, or q ∈ (2,∞) if d = 1 or 2. There exists a concave increasing function μ : R+ → R+
such that μ(α) = κα for any α � Λ

q−2 , μ(α) < κα for α > Λ
q−2 and

‖∇u‖2
L2(M)

+ α‖u‖2
L2(M)

� μ(α)‖u‖2
Lq(M) ∀u ∈ H1(M).

The asymptotic behavior of μ is given by μ(α) ∼ Kq,dα
1−ϑ as α → +∞, with ϑ = d q−2

2q and Kq,d defined by (1).

Proof. There is an optimal function for the interpolation inequality, as can be shown by standard variational techniques.
Applying Theorem 1 to the solutions of the Euler–Lagrange equations completes the proof for fixed values of α. As an
infimum on u of affine functions with respect to α, the function α → μ(α) is concave. It remains to establish the properties
of α for large values of μ.

Using a well-chosen test function obtained by scaling an optimal function for (1) on the tangent plane to an arbitrary
point of M, one can prove that lim supα→+∞ αϑ−1μ(α) � Kq,d . Arguing by contradiction as in [4, Proposition 10], we can
find a sequence (αn)n∈N such that limn→+∞ αn = +∞ and limn→+∞ αϑ−1

n μ(αn) < Kq,d , and a sequence of optimal functions
(un)n∈N such that ‖un‖Lq(Sd) = 1, which concentrates because lim supn→+∞ αϑ

n ‖un‖2
L2(Sd)

< Kq,d . Some classical surgery and

a convexity inequality provide a contradiction by constructing a minimizing sequence for (1). �
3. Ground state estimates for Schrödinger operators on Riemannian manifolds

In this section, we keep using the notations of Section 2 and generalize to (M, g) the spectral results established for the
sphere in [4]. By inverting the function α �→ μ(α), we see that α : R+ → R+ is increasing, convex and satisfies: α(μ) = μ

κ

for any μ ∈ (0, κΛ
q−2 ), α(μ) >

μ
κ for μ ∈ ( κΛ

q−2 ,+∞). With L1
γ ,d := (Kq,d)

−p , γ = p − d
2 , we obtain for a general manifold M

the same behavior of μ �→ α(μ) when μ → +∞ as in the case of a sphere.
Let μ := ‖V ‖Lp(Sd) . Since p and q

2 are Hölder conjugate exponents, it follows from Hölder’s inequality that:∫
M

|∇u|2 dv g −
∫
M

V |u|2 dv g + α(μ)

∫
M

|u|2 dv g � ‖∇u‖2
L2(Sd)

− μ‖u‖2
Lq(Sd)

+ α(μ)‖u‖2
L2(Sd)

with equality if V p−1 and |u|2 are proportional. The right-hand side is nonnegative according to Proposition 3. By taking the
infimum of the left-hand side, we can deduce an estimate of the lowest, nonpositive eigenvalue λ1(−�g − V ) of −�g − V ,
which provides us with our first main result.

Theorem 4. Let d � 1, p ∈ (1,+∞) if d = 1 and p ∈ ( d
2 ,+∞) if d � 2 and assume that Λ
 > 0. With the above notations and

definitions, for any nonnegative V ∈ Lp(M), we have:∣∣λ1(−�g − V )
∣∣ � α

(‖V ‖Lp(M)

)
. (4)

Moreover, we have α(μ)p− d
2 = L1

p− d
2 ,d

μp(1 + o(1)) as μ → +∞.

The estimate (4) is optimal in the sense that for any μ ∈ (0,+∞), there exists a nonnegative function V such that
μ = ‖V ‖Lp(M) and |λ1(−�g − V )| = α(μ). Moreover, if μ < κΛ


q−2 , α(μ) = μ
κ and equality in (4) is achieved by constant

potentials.
In the case of operators −�g + W on M, where W is a nonnegative potential, following again the same arguments as

in [4] in the case of the sphere, and the rigidity result of Theorem 1, we obtain our second main result.

Theorem 5. Let d � 1, p ∈ (0,+∞). There exists an increasing concave function ν : R+ → R+ , satisfying ν(β) = β/κ , for any
β ∈ (0,

p+1
2 κΛ) if p > 1, such that for any positive potential W we have:

λ1(−� + W ) � ν(β) with β =
( ∫

M

W −p dv g

)1/p

.

Moreover, for large values of β , we have ν(β)−(p+ d
2 ) = L1

−(p+ d
2 ),d

β−p(1 + o(1)) as β → +∞.
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With p = q
2−q , the spectral estimate of Theorem 5 is derived from the interpolation inequality:

‖∇u‖2
L2(M)

+ β
(∫
M

|u|q dv g
)2/q � ν(β)‖u‖2

L2(M)
∀u ∈ H1(M).

The concentration phenomena leading to the asymptotics for large norms of W can be studied as in Proposition 3: see [4]
for the proof in the case of a sphere. We omit the details of the proof of Theorem 5.
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