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1 INTRODUCTION

Spectral theory of self-adjoint operators has exhibited an enormous development since the discovery of quantummechan-
ics in the beginning of the last century and by now it can be regarded as well understood in many respects. Recent years
have brought new motivations for considering non-self-adjoint operators, too, including quantum mechanics again, but
this theory is still in its infancy.
A strong impetus for a systematic study of spectral properties of Schrödinger operators with complex-valued potentials

goes back to the celebrated result of Davies et al. in 2001 [1] showing that every discrete eigenvalue of the one-dimensional
operator −∆+̇$ lies in the closed disk of the complex plane centred at the origin and with the radius equal to 14‖$‖2%1(ℝ).
This bound is sharp in the sense that there are potentials with eigenvalues lying on the boundary circle. The purpose of
this paper is to extend this type of bounds to biharmonic operators

'$ ∶= ∆2+̇$ in %2(ℝ)) (1.1)

in dimensions ) = 1, 2, 3. The feature of our results is that our bounds are sharp and quantitative (at least if ) = 1, 3).
Moreover, potentials of minimal regularity are considered and we cover embedded eigenvalues, too.
The pioneeringwork [1] has been followedby extensive investigations devoted to bounds on thenumber andmagnitudes

of eigenvalues of Schrödinger operators with complex-valued potentials. Instead of listing the huge number of articles by
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various groups on operators not dealt with in this paper, we refer to the recent work [13] containing a rather extensive
bibliography. On the other hand, related issues for higher-order partial differential operators seem to be just scarcely
considered in the literature, even in the self-adjoint setting. The reader is referred to [7, 9, 10, 17, 20, 22, 26]; see also [4–6,
11, 14] for other spectral questions.
We recall the importance of biharmonic operators in continuum mechanics and in particular linear elasticity theory

and the solution of Stokes flows. To the best of our knowledge, the only work where eigenvalue bounds for non-self-
adjoint biharmonic operators were considered previously is the recent paper of Enblom [10]. We also refer to recent
Hulko’s paper [17] for bounds on the number of discrete eigenvalues of biharmonic operators perturbed by exponen-
tially decaying complex-valued potentials. While the author of [10] proceeds in a rather extensive generality (polyhar-
monic operators in any dimension), her bounds are not quantitative (in the sense that the involved constants depend
on the arguments of the individual eigenvalues under consideration) and embedded eigenvalues are not covered. For
these reasons, it is our belief that our results are of interest even if restricted to biharmonic operators in low dimensions
only. Moreover, our methodology in principle enables one to obtain analogous results also for higher-order polyharmonic
operators.
Before stating ourmain results, we remark that the operator (1.1) is introduced in a standardway as anm-accretive oper-

ator obtained as a form sum of the bi-Laplacian '0 ∶= ∆2 with domain '4(ℝ)) and a relatively form-bounded potential$ ∶ ℝ) → ℂ. We refer to Section 2 for more details. More specifically, our standing assumption is that there exist numbers, ∈ (0, 1) and . ∈ ℝ such that, for all / ∈ '2(ℝ)),
∫ℝ) |$||/|2 ≤ ,∫ℝ) |∆/|2 + .∫ℝ) |/|2. (1.2)

In particular, potentials $ ∈ %1(ℝ)) are covered by this hypothesis. Furthermore, in the same way, it is also possible to
proceed in a greater generality and give ameaning to the distributional Dirac delta potential 0, which is explicitly solvable.
Putting ‖0‖%1(ℝ)) ∶= 1 by convention, Theorem 1.1 remains valid in this more general setting.
Our first result is a biharmonic analogue of the celebrated result of [1] for one-dimensional Schrödinger operators.

Theorem 1.1. Let ) ∈ {1, 2, 3} and assume that $ ∈ %1(ℝ)). Then there exists a universal constant 1) > 0 such that
2p('$) ⊂ {4 ∈ ℂ ∶ |4| ≤ 1) ‖$‖4∕(4−))%1(ℝ)) }. (1.3)

Moreover, one can take 11 = 14 and 13 = 14 1(46)4 for dimensions ) = 1 and ) = 3, respectively.
The theorem is sharp due to the weak-coupling asymptotics

inf 2('7$) = −8) 74∕(4−))‖$‖4∕(4−))%1(ℝ)) + 9(74∕(4−))) as 7 → 0+
valid for every sufficiently regular, non-positive, real-valued potential $ with 81 ∶= 14 , 82 ∶= 164 and 83 ∶= 14 1(46)4 , cf. [22,
Eq. (8)]. We do not know whether one can take 12 = 164 in (1.3) for dimension ) = 2, but it is natural to conjecture so. The
result is sharp also in the sense that for ) = 1 (respectively, ) = 3) one has 2p(':0) = { 14:4∕3;−<6∕3} for every : ∈ ℂ
such thatℜ: < |ℑ:| (respectively, 2p('46:0) ⊃ { − 14:4} ifℜ: < −|ℑ:|).
In the next series of results, we go beyond the %1-potentials in the three-dimensional case. First, we employ the Rollnik

class of potentials (cf. [24, Ch. I]), which consist of all $ ∈ %1loc(ℝ3) such that
‖$‖2@(ℝ3) ∶= ∬ℝ3×ℝ3

|$(B)||$(C)|
|B − C|2 )B )C <∞. (1.4)

In Section 2, we argue that $ ∈ @(ℝ3) is a sufficient condition to guarantee (1.2), so '$ is well defined.
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Theorem 1.2. Let ) = 3 and assume that $ ∈ @(ℝ3). Then
2p('$) ⊂ {4 ∈ ℂ ∶ |4| ≤ 12 ‖$‖2@(ℝ3)(46)2

} . (1.5)

This result has an important consequence for potentials belonging to %3∕2(ℝ3) ↪ @(ℝ3). In fact, using a sharp ver-
sion of the Hardy–Littlewood–Sobolev inequality (cf. [21, Thm. 4.3]) which quantifies the embedding, the bound (1.5)
immediately implies the following result.

Corollary 1.3. Let ) = 3 and assume that $ ∈ %3∕2(ℝ3). Then
2p('$) ⊂ {4 ∈ ℂ ∶ |4| ≤ 18 1(46)2∕3 ‖$‖2%3∕2(ℝ3)

}. (1.6)

In view of Theorem 1.1 and Corollary 1.3, complex interpolation applied to an appropriate analytic family of Birman–
Schwinger type operators yields the following explicit eigenvalue bound.

Theorem 1.4. Let ) = 3 and assume that $ ∈ %F(ℝ3) for some F ∈ (1, 3∕2). Then
2p('$) ⊂ {4 ∈ ℂ ∶ |4| ≤ 2 12−14F4F−3 (46) 4F−84F−3 ‖$‖ 4F4F−3%F(ℝ3)

}. (1.7)

Finally, we establish the following robust result.

Theorem 1.5. Let ) = 3 and assume (1.2). Then
2p('$) ⊂

⎧
⎪
⎪
⎨
⎪
⎪⎩

4 ∈ ℂ ∶ |4| ≤ ⎛
⎜
⎜
⎜⎝

sup/∈'1(ℝ3)/≠0
∫ℝ3 |$||/|2
∫ℝ3 |∇/|2

⎞
⎟
⎟
⎟⎠

2⎫⎪
⎪
⎬
⎪
⎪⎭

. (1.8)

This theorem is particularly useful to cover the Hardy-type potentials B ↦ |B|−2, which belong neither to %1(ℝ3) nor@(ℝ3). For this reason, let us consider the class of potentials, which consist of all $ ∈ %1loc(ℝ3) such that
‖$‖'(ℝ3) ∶= esssupB∈ℝ3 |B|2|$(B)| <∞. (1.9)

Employing the classical Hardy inequality

∫ℝ3 |∇/|2 ≥ 14 ∫ℝ3
|/(B)|2
|B|2 )B (1.10)

valid for every / ∈ '1(ℝ3), it is easy to check that $ ∈ '(ℝ3) is a sufficient condition to guarantee (1.2). Furthermore,
using (1.10) in (1.8), we get the following immediate consequence.

Corollary 1.6. Let ) = 3 and assume that $ ∈ '(ℝ3). Then
2p('$) ⊂ {4 ∈ ℂ ∶ |4| ≤ 16‖$‖2'(ℝ3)} . (1.11)

In this paper we leave aside dimension ) = 4, which exhibits the same type of difficulties as dimension two for
Schrödinger operators. The reason for explicit constants in our one- and three-dimensional theorems is due to the



1336 IBROGIMOV et al.

availability of explicit forms of the resolvent kernels of '0 in these dimensions. On the other hand, in view of the
subcriticality of '0 in dimensions ) ≥ 5, a different kind of results is expected in analogy with the case of Schrödinger
operators (cf. [13, 15, 19]): the point spectrum of '$ should be empty for all potentials which are sufficiently small in a
suitable sense. This type of results are also left open in this paper.
The organisation of the paper is as follows. In Section 2 we rigorously introduce the biharmonic operators (1.1) and

determine sufficient conditions on the potential $ which guarantee the basic hypothesis (1.2). In Section 3 we establish
themain tool of our approach, namely a sort of the Birman–Schwinger principle covering embedded eigenvalues, too. The
proofs of Theorems 1.1–1.5 are given in Section 4. Finally, in Section 5 we introduce explicitly solvable models in terms of
Dirac delta potentials and argue about the optimality of Theorem 1.1 for dimensions ) = 1 and ) = 3.
2 DEFINITION OF BIHARMONIC OPERATORS

First of all, let us comment on the definition of'$ given in (1.1).
Let'0 be the the self-adjoint operator in %2(ℝ)) associated with the quadratic form

ℎ0[/] ∶= ∫ℝ) |∆/|2, J(ℎ0) ∶= '2(ℝ)). (2.1)

One hasJ('0) = '4(ℝ)) and'0 = ∆2. The spectrum of'0 is purely absolutely continuous and coincides with the semi-
axis [0, +∞). If ) ≤ 4, the operator'0 is critical in the sense that inf 2('0 + $) < 0whenever$ ∈ 1∞0 (ℝ)) is real-valued,
non-positive and non-trivial. On the other hand, if ) ≥ 5, the operator is subcritical in the sense that its spectrum is stable
under the non-positive perturbations above; more specifically,'0 satisfies a Hardy-type inequality'0 ≥ K in the sense of
forms, where K ∶ ℝ) → [0,∞) is non-trivial.
Let L be a quadratic form in %2(ℝ)), which is relatively bounded with respect to ℎ0 with the relative bound less than

one. That is, J(L) ⊃ '2(ℝ)) and there exist numbers , ∈ (0, 1) and . ∈ ℝ such that, for all / ∈ '2(ℝ)),
|L[/]| ≤ ,∫ℝ) |∆/|2 + .∫ℝ) |/|2. (2.2)

Then the sum ℎ$ ∶= ℎ0 + L is a closed sectorial form with J('$) = '2(ℝ)), which gives rise to an m-sectorial opera-
tor'$ in %2(ℝ)) via the representation theorem (cf. [18, Thm. VI.2.1]).
For example, if $ ∈ %1loc(ℝ)) is such that

L[/] ∶= ∫ℝ) $|/|2 , J(L) ∶= {/ ∈ %2(ℝ)) ∶ ∫ℝ) |$||/|2 <∞},
verifies (2.2) (which coincides with (1.2) in this case), then we write '$ = '0+̇$ as in (1.1) and understand the plus
symbol in the sense of forms described above. It is important to keep in mind that '$ may differ from the operator sum'0 + $. Since the adjoint operator satisfies'∗$ = '$ =  '$ , where  is the complex conjugation operator defined by
 / ∶= /, '$ is a  -self-adjoint operator. Consequently, the residual spectrum of '$ is always empty (cf. [8, Sec. III.5]).
Furthermore, if $ vanishes at infinity in a suitable sense, then (any kind of) the essential spectrum of'$ coincides with
the semi-axis [0, +∞).
Let us now discuss sufficient conditions which guarantee (2.2).
By the Sobolev embedding theorem ([3, Thm. 5.4]), every function / ∈ '2(ℝ)) is bounded and continuous as long as) ≤ 3. More specifically (cf. [23, Theorem IX.28]), for any positive : there is 7 ∈ ℝ such that, for all / ∈ '2(ℝ)),

‖/‖%∞(ℝ)) ≤ :‖∆/‖%2(ℝ)) + 7‖/‖%2(ℝ)) . (2.3)

Consequently, any potential $ ∈ %1(ℝ)) + %∞(ℝ)) satisfies (1.2) with the relative bound equal to zero (i.e. , can be
chosen arbitrarily small). Furthermore, the inequality (2.3) enables us to give a meaning to the operator '0 = '0+̇0,
where 0 is the Dirac delta function, by setting L[/] ∶= |/(0)|2, J(L) ∶= '2(ℝ)).
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Rollnik potentials are relatively form-bounded with respect to the Laplacian with the relative bound equal to zero
(cf. [23, Theorem X.19]). More specifically, if $ ∈ @(ℝ3), then for any positive : there is 7 ∈ ℝ such that, for all/ ∈ '1(ℝ3),

∫ℝ3 |$||/|2 ≤ :‖∇/‖2%2(ℝ3) + 7‖/‖2%2(ℝ3) .
Consequently, if additionally / ∈ '2(ℝ3), then

∫ℝ3 |$||/|2 ≤ : (/,−∆/)%2(ℝ3) + 7‖/‖%2(ℝ3)
≤ :‖/‖%2(ℝ3)‖∆/‖%2(ℝ3) + 7‖/‖2%2(ℝ3) . (2.4)

From this inequality, it is easy to conclude that any potential $ ∈ @(ℝ3) + %∞(ℝ3) satisfies (1.2) with the relative bound
equal to zero.
Finally, if $ ∈ '(ℝ3), then the Hardy inequality (1.10) yields, for all / ∈ '1(ℝ3),

∫ℝ3 |$||/|2 ≤ ‖$‖'(ℝ3)∫ℝ3
|/(B)|2
|B|2 )B ≤ 4‖$‖'(ℝ3)‖∇/‖2%2(ℝ3) .

Hence $ is form-subordinated with respect to the Laplacian. Proceeding as in (2.4), we conclude that any potential$ ∈ '(ℝ3) + %∞(ℝ3) satisfies (1.2) with the relative bound equal to zero.
3 THE BIRMAN–SCHWINGER PRINCIPLE

The main role in our proof of Theorems 1.1–1.5 is played by the Birman–Schwinger operator

NO ∶= |$|1∕2 ('0 − O)−1$1∕2 with $1∕2 ∶= |$|1∕2 sgn($) , (3.1)

where sgn ∶ ℂ → ℂ is the complex signum function defined by

sgn(O) ∶= ⎧
⎪
⎨
⎪⎩

O
|O| if O ≠ 0,0 if O = 0.

We abuse the notation by using the same symbols for maximal operators of multiplication and their generating functions.
The operator NO is well defined (on its natural domain of the composition of three operators) for all O ∈ ℂ and ) ≥ 1.
If O ∉ [0, +∞), however, NO is a bounded operator under our hypothesis (1.2). Indeed, $1∕2 maps %2(ℝ)) to '−2(ℝ))

by duality,
('0 − O)−1 is an isomorphism between '−2(ℝ)) and '2(ℝ)), and the latter space is mapped by |$|1∕2 back

to %2(ℝ)). Furthermore, we have a useful formula for the integral kernel of NO:
NO(B, C) = |$|1∕2(B) R̃O(B, C)$1∕2(C) , (3.2)

where R̃O is the Green’s function of '0 − O, i.e. the integral kernel of the resolvent ('0 − O)−1. What is more, for dimen-
sions ) = 1 and ) = 3, we have explicit formulae for R̃O, whereas the latter can be expressed in terms of modified Hankel
functions for ) = 2. In fact, using the identity

(∆2 − O)−1 = 12S [(−∆ − S)−1 − (−∆ + S)−1], (3.3)
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where S ∈ ℂ ⧵ [0,∞) is such that S2 = O (throughout the paper we choose the principal branch of the square root), and
the well-known formulae for the integral kernels of the resolvent of the Laplacian in these dimensions yield

R̃O(B, C) = 12S [RS(B, C) − R−S(B, C)], (3.4)

where

RS(B, C) ∶=
⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

;−√−S |B−C|2√−S if ) = 1,126 N0(√−S |B − C|) if ) = 2,
146 ;−

√−S |B−C|
|B − C| if ) = 3.

(3.5)

Here N0 is a modified Bessel (also called Macdonald’s) function (see [2, Sec. 9] or [16, Sec. 8.4–8.5]).
The following lemma provides an integral criterion for the existence of solutions to the differential eigenvalue equa-

tion corresponding to '$ and can be considered as a one-sided version of the conventional Birman–Schwinger principle
extended to possible eigenvalues embedded in [0, +∞) as well. Its proof is inspired by the ones of the similar results in [12,
13]. By U ∈ %20(ℝ)) in the lemma below we mean U ∈ %2(ℝ)) and that suppU is compact.
Lemma 3.1. Let ) ∈ {1, 2, 3} and assume (1.2). If '$/ = 4/ with some 4 ∈ ℂ and / ∈ J('$), then V ∶=
|$|1∕2/ ∈ %2(ℝ)) obeys ∀U ∈ %20(ℝ)) , limX→0± (U,N4+<XV) = −(U,V) . (3.6)

Proof. First, we notice that (1.2) implies that V ∈ %2(ℝ)) whenever / ∈ J('$) ⊂ '2(ℝ)). Let U ∈ %20(ℝ)) be fixed.
Given any 4 ∈ ℂ, there is X0 > 0 such that 4 + <X ∉ [0, +∞) for all real X satisfying 0 < |X| < X0. We have

(U,N4+<XV) = ∬ℝ)×ℝ) U(B) |$|1∕2(B)R4+<X(B, C)$(C)/(C))B )C
= ∫ℝ) YX(C)$(C)/(C))C ,

(3.7)

where

YX ∶= ∫ℝ) U(B) |$|1∕2(B)R4+<X(B, ⋅))B = ('0 − 4 − <X)−1 |$|1∕2 U ,
where the second equality holds due to the symmetry RO(B, C) = RO(C,B). In view of (1.2), |$|1∕2U ∈ %2(ℝ)). Since X ≠ 0
is so small that 4 + <X ∉ 2('0), we have YX ∈ J('0) = '4(ℝ)). In particular, YX ∈ '2(ℝ)) and the weak formulation of
the eigenvalue equation'$/ = 4/ yields

∫ℝ) YX(C)$(C)/(C))C = −(∆YX,∆/) + 4(YX,/)
= −(∆/,∆YX) + 4(/, YX)= −(∆/,∆YX) + (4 + <X)(/, YX) − <X(/, YX) (3.8)= −(/, |$|1∕2U) − <X(/, YX)= −(U, |$|1∕2/) − <X(YX,/) .
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Here the last but one equality follows from the weak formulation of the resolvent equation
('0 − 4 − <X)YX = |$|1∕2U.

Consequently, (3.7) and (3.8) imply (3.6) after taking the limit X → 0±, provided that X (ȲX,/) → 0 as X → 0. To see the
latter, we write

||
(YX,/)|| = ||

(U,\X/)|| ≤ ‖U‖‖\X‖‖/‖ ,
where \X ∶= ]Ω |$|1∕2('0 − 4 − <X)−1 with Ω ∶= suppU, and it remains to show that X ‖\X‖ tends to zero as X → 0.
Following [24, Thm. III.6], we use the resolvent kernels (3.4) with (3.5) and the estimate ‖\X‖ ≤ ‖\X‖HS.
For ) = 1, we have

‖\X‖2HS = 14|S|2 ∬Ω×ℝ |$(B)| |RS(B, C) − R−S(B, C)|2)B )C
≤ 12|S|2 ∬Ω×ℝ |$(B)|[;−2ℜ√−S |B−C|4|S| + ;−2ℜ√S |B−C|4|S|

])B )C
= 18|S|3

[ 1ℜ√−S + 1ℜ√S
]

∫Ω |$(B)|)B ,
where the last integral is bounded because $ ∈ %1loc(ℝ) as a consequence of (1.2). Elementary calculations show that
|S|3ℜ√±S can not decay faster than |X|7∕4 as X → 0. Hence, we have ‖\X‖ = (|X|−7∕8) as X → 0, which concludes the
proof of the lemma for ) = 1.
For ) = 3, we have analogous estimates

‖\X‖2HS ≤ 13262|S|2 ∬Ω×ℝ3 |$(B)|
[;−2ℜ√−S |B−C|

|B − C|2 + ;−2ℜ√S |B−C|
|B − C|2

])B )C
= 1166|S|2

[ 1ℜ√−S + 1ℜ√S
]

∫Ω |$(B)|)B .
Since |S|2ℜ√±S can not decay faster than |X|5∕4 as X → 0, we have ‖\X‖ = (|X|−5∕8) as X → 0. This concludes the proof
of the lemma for ) = 3.
For) = 2, we need to do rather involved estimates.Using the integral representation of theMacdonald’s function (cf. [16,

§ 8.432]), we can write Green’s function for the biharmonic operator as

R̃O(B, C) = 146S ∫
∞

1 ;−√−S |B−C|_ − ;−√S |B−C|_
√_2 − 1 )_.

Next, we observe that, for _ > 1,
∫

∞
0 |||;−√−S_` + ;−√S_`|||2 )` ≤ 2∫ ∞

0
(;−2ℜ√−S_` + ;−2ℜ√S_`) )` = 1_

[ 1ℜ√S + 1ℜ√−S
] .

In view of this estimate, the Minkowski inequality yields

‖\X‖2HS ≤ 1862|S|2(∫Ω |$(B)|)B)(

∫
∞

1
(
∫

∞
0 |||;−√−S_` + ;−√S_`|||2)`)1∕2 )_√_2 − 1

)2

= 1862|S|2
[ 1ℜ√−S + 1ℜ√S

](
∫Ω |$(B)|)B)(

∫
∞

1 1√_√_2 − 1 )_
)2 .
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We already know that |S|2ℜ√±S can not decay faster than |X|5∕4 as X → 0. Hence, again we have ‖\X‖ = (|X|−5∕8) asX → 0, which concludes the proof of the lemma for ) = 2.
The preceding lemma can be viewed as a precise statement of one side of the Birman–Schwinger principle under the

minimal regularity assumption (1.2) on the potential. It roughly says that if 4 is an eigenvalue of'$ , then −1 is an eigen-
value of an integral equation related to N4. If 4 ∉ 2('0) the converse implication also holds, but it is not generally true if4 ∈ 2('0) (cf. [24, Sec. III.2]) and it is not needed for the purpose of this paper. In fact, we exclusively use the following
corollary of Lemma 3.1. □
Corollary 3.2. Let ) ∈ {1, 2, 3} and assume (1.2). Let 4 ∈ ℂ be arbitrary. If either 4 ∈ K('0) and ‖N4‖ < 1 or 4 ∈ 2('0)
and lim inf X→0± ‖‖N4+<X‖‖ < 1, then 4 ∉ 2p('$).
Proof. Let 4 ∈ 2p('$), let / be a corresponding eigenfunction and set V ∶= |$|1∕2/. If it were the case that V = 0, then
the definition of'$ would yield

(U, ('0 − 4)/) = (U, ('$ − 4)/) − ∫ℝ) U$/ = 0,
for all U ∈ '2(ℝ)), and consequently, '0/ = 4/. Unless / = 0, this would mean that 4 is an eigenvalue of '0, which is
impossible. Hence, we conclude that V ≠ 0.
Next, if 4 ∈ K('0), then Lemma 3.1 with X = 0 implies

‖V‖2‖‖N4‖‖ ≥ ||
(V,N4V)|| = ‖V‖2 (3.9)

and thus ‖‖N4‖‖ ≥ 1.
If 4 ∈ 2('0), we set Vb ∶= cbV for every positive b, where cb(B) ∶= c(B∕b) and c ∈ 1∞0 (ℝ)) is a usual cut-off function

satisfying c(B) = 1 for |B| ≤ 1 and c(B) = 0 for |B| ≥ 2. As in (3.9), we have
‖Vb‖‖V‖‖‖N4+<X‖‖ ≥ ||

(Vb,N4+<XV)|| .
In view of Vb ∈ %20(ℝ)), we can invoke Lemma 3.1 and take the limit X → 0± to conclude

‖Vb‖‖V‖ lim infX→0± ‖‖N4+<X‖‖ ≥ |(Vb,V)| .
The desired claim now follows by taking the limit b → ∞. □
4 PROOFS

First, we establish two elementary inequalities which will be crucial in obtaining sharp eigenvalue bounds.

Lemma 4.1. For all nonnegative real numbers F and d, the following inequality holds:12(;d−F + ;F−d) ≤ ;F+d − sin(F + d). (4.1)

Proof. Let us rewrite (4.1) as

;−2F + ;−2d + 2;−(F+d) sin(F + d) ≤ 2 . (4.2)
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Since (4.2) is symmetric with respect to F and d, there is no loss of generality in assuming that 0 ≤ F ≤ d. Let us fixF = F0 ≥ 0 and analyse the smooth function
Φ(d) ∶= ;−2F0 + ;−2d + 2;−(F0+d) sin(F0 + d)

on the interval
[F0,∞)

. It is easy to check that every possible critical point d0 of Φmust satisfy the equation

;d0−F0 = cos(F0 + d0) − sin(F0 + d0).
In view of this observation, some elementary calculations yield that

Φ(d0) = 2;−2F0(1 − sin2(F0 + d0)) ≤ 2. (4.3)

On the other hand, we have

Φ(F0) = 2;−2F0(1 + sin(2F0)) ≤ 2, limd↑+∞Φ(d) = ;−2F0 ≤ 1, (4.4)

the first estimate being the consequence of the elementary inequality sin(_) ≤ _ ≤ ;_ − 1 for _ ≥ 0. Hence, we conclude
from (4.3) and (4.4) that

maxd≥F0 Φ(d) ≤ 2,
which proves the claim in (4.2). □
Lemma 4.2. For all nonnegative real numbers F and d, the following inequality holds:12(;d−F + ;F−d) ≤ (F2 + d2);F+d + cos(F + d). (4.5)

Proof. Let us rewrite (4.5) as

;−2F + ;−2d − 2;−(F+d) cos(F + d) ≤ 2(F2 + d2) . (4.6)

Since (4.6) is symmetric with respect to F and d, there is no loss of generality in assuming that 0 ≤ F ≤ d. Let us fixF = F0 ≥ 0 and analyse the smooth function
Φ(d) ∶= ;−2F0 + ;−2d − 2;−(F0+d) cos(F0 + d) − 2(F20 + d2)

on the interval [F0,∞). We have
Φ′(d) = −2;−2d + 2;−(F0+d) cos(F0 + d) + 2;−(F0+d) sin(F0 + d) − 4d. (4.7)

On the other hand, for all `, _ ∈ ℝ, we have the well-known inequalities ;_ ≥ cos(_) + sin(_) and ;` ≥ 1 + `. Applying these
inequalities with _ = F0 + d and ` = −2d, we obtain

Φ′(d) ≤ −2;−2d + 2 − 4d ≤ 0. (4.8)

Therefore, Φ is non-increasing on [0,∞) and thus we have
Φ(d) ≤ Φ(F0) = 2;−2F0 + 2;−2F0 cos(2F0) − 4F20 ≤ 0,
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for all d ≥ F0, where for the last step one needs to recall the inequality
1 − cos(_) ≤ 12 _2 ≤ 12 _2;_, _ ≥ 0.

Hence, for each fixed F ≥ 0, we have Φ(d) ≤ 0 for all d ≥ F. This proves the desired claim. □
Remark 4.3. We note that the expressions on the left-hand sides of (4.2) and (4.6) are nonnegative for all F, d ≥ 0. In the
same way as in Lemma 4.1 one can show that12(;d−F + ;F−d) ≤ ;F+d + cos(F + d) (4.9)

holds for all F, d ≥ 0.
Now we are in a position to establish our theorems.

4.1 Proof of Theorem 1.1

We start with the case 4 ∈ ℂ ⧵ [0,∞) and denote by S the principal square root of 4 as before. Throughout the proof we
assume the parameter S to be fixed.
First, for each ) ∈ {1, 2, 3}, we justify the existence of a universal constant 8) > 0 such that the corresponding Green’s

function of the biharmonic operators obeys the following pointwise estimate

||R̃4(B, C)|| ≤ 8)
|S|2−)∕2 . (4.10)

For the case ) = 1, elementary calculations show that the inequality

|||
√S ;−√−S |B−C| −√−S ;−√S |B−C|||| ≤ √2√|S|

is equivalent to (4.1) with F = ℜ√S |B − C| ≥ 0 and d = ℑ√S |B − C| ≥ 0 if arg(4) ∈ (0,6] or withF = ℜ√−S |B − C| ≥ 0 and d = ℑ√−S |B − C| ≥ 0 if arg(4) ∈ (−6, 0). Hence, we have (4.10) with the constant81 ∶= 12√2 , i.e.
||R̃4(B, C)|| ≤ 12√2|S|3∕2 .

For the case ) = 3, elementary calculations show that the inequality

|||;−√−S |B−C| − ;−√S |B−C|||| ≤ √2√|S||B − C|
is equivalent to (4.5) with F = ℜ√S |B − C| ≥ 0 and d = ℑ√S |B − C| ≥ 0 if arg(4) ∈ (0,6] or withF = ℜ√−S |B − C| ≥ 0 and d = ℑ√−S |B − C| ≥ 0 if arg(4) ∈ (−6, 0). That is why we have (4.10) with the constant83 ∶= 14√26 , i.e.

||R̃4(B, C)|| ≤ 14√26√|S| .



IBROGIMOV et al. 1343

For the case ) = 2, on the account of the asymptotic expansion of the Macdonald’s function N0(h) for small h, we can
write (cf. [16, § 8.447])

RS(B, C) = − 126 ln√−S − 126(i + ln |B − C|2 ) + o(|B − C|), |B − C| → 0+,
where i is the Euler constant. Hence, it follows that

RS(B, C) − R−S(B, C) = 126(ln√S − ln√−S) + o(|B − C|)
= − <4 + 9(|B − C|), |B − C| → 0+,

and consequently, recalling (3.4), we get

R̃4(B, C) = <86SArg(S) + 9(|B − C|), |B − C| → 0+.
On the other hand, in view of the well-known asymptotic expansion of the Macdonald’s function N0(h) for large h, we
have

RS(B, C) = √ 62√−S |B − C| ;−√−S|B−C| (1 + (1)) = 
( 14√|B − C|

) , |B − C| → +∞,
and consequently,

R̃4(B, C) = (1), |B − C| → +∞.
Since these asymptotic expansions are uniform in S and the Macdonald’s function is entire on the right half-plane, we
conclude the existence of a universal constant 82 > 0 satisfying (4.10).
In view of (4.10), now we can estimate the norm of the Birman–Schwinger operator as follows

‖‖N4‖‖2 ≤ ‖‖N4‖‖2HS = ∬ℝ)×ℝ) |$(B)|||R̃4(B, C)||2 |$(C)|)B )C ≤ 82)
|S|4−) ‖$‖2%1(ℝ)) (4.11)

and thus

‖‖N4‖‖ ≤ 8)‖$‖%1(ℝ))
|4|1−)∕4 . (4.12)

If 4 ∈ (0,∞), then the same analysis applied for 4 + <X with X > 0 (instead of 4) yields
lim infX→0± ‖N4+<X‖ ≤ lim infX→0± 8)‖$‖%1(ℝ))

|4 + <X|1−)∕4 = 8)‖$‖%1(ℝ))
|4|1−)∕4 .

Hence, Corollary 3.2 implies that 4 ∈ ℂ ⧵ {0} cannot be an eigenvalue for'$ unless it holds that
8)‖$‖%1(ℝ)) ≥ |4|1−)∕4.

This completes the proof since the origin 4 = 0 obviously belongs to the right-hand side of (1.3). □
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4.2 Proof of Theorem 1.2

First, assume that 4 ∈ ℂ ⧵ [0,∞) and let S be the principal square root of 4. Elementary calculations show that the esti-
mate

|||;−√−S |B−C| − ;−√S |B−C|||| ≤ √2
is equivalent to (4.9) withF = ℜ√S |B − C| ≥ 0, d = ℑ√S |B − C| ≥ 0 if arg(4) ∈ (0,6], andwithF = ℜ√−S |B − C| ≥ 0,d = ℑ√−S |B − C| ≥ 0 if arg(4) ∈ (−6, 0). Hence, the Green’s function can be estimated as

||R̃4(B, C)|| ≤ 14√26|S||B − C|
for all distinct B, C ∈ ℝ3. Using this, we can estimate the norm of the Birman–Schwinger operator in terms of the Rollnik
norm of $ as follows

‖‖N4‖‖2 ≤ ‖‖N4‖‖2HS = ∬ℝ3×ℝ3 |$(B)|||R̃4(B, C)||2 |$(C)|)B )C ≤ 13262|S|2 ‖$‖2@(ℝ3).
Hence, we have

‖‖N4‖‖ ≤ 146√|4| ‖$‖@(ℝ3)√2 . (4.13)

If 4 ∈ (0,∞), then the same analysis applied for 4 + <X with X > 0 (instead of 4) yields
lim infX→0± ‖‖N4+<X‖‖ ≤ lim infX→0± 146√|4 + <X| ‖$‖@(ℝ3)√2 = 146√|4| ‖$‖@(ℝ3)√2 .

Hence, Corollary 3.2 implies that 4 ∈ ℂ ⧵ {0} cannot be an eigenvalue for'$ if146 ‖$‖@(ℝ3)√2 < √
|4|.

This completes the proof since 4 = 0 obviously belongs to the right-hand side of (1.5). □
4.3 Proof of Theorem 1.4

Let 4 ∈ ℂ ⧵ [0,∞) be fixed and suppose that 1 < F < 3∕2. Define the operator family
j4(h) ∶= |$|(−h∕3+1)F∕2('0 − 4)−1|$|(−h∕3+1)F∕2,

for h ∈ ℂ with 0 ≤ ℜh ≤ 1. By the hypothesis, we have |$|F ∈ %1(ℝ3). Hence, we deduce from (4.12) that

‖‖j4(<C)‖‖ ≤ ‖‖‖|$|F∕2('0 − 4)−1|$|F∕2‖‖‖ ≤ 14√26 ‖$‖F%F(ℝ3)
|4|1∕4 , (4.14)
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for all C ∈ ℝ. On the other hand, we also have that |$|2F∕3 ∈ %3∕2(ℝ3) ⊂ @(ℝ3). Consequently, for all C ∈ ℝ, first using
the bound (4.13) and then the Hardy–Littlewood–Sobolev inequality (cf. [21, Thm. 4.3]), we obtain

‖‖j4(1 + <C)‖‖ ≤ ‖‖‖|$|F∕3('0 − 4)−1|$|F∕3‖‖‖ ≤ 146√2
‖‖|$|2F∕3‖‖@(ℝ3)√

|4|
≤ 12√2|4|(46)1∕3 ‖‖|$|2F∕3‖‖%3∕2(ℝ3) = 12√2(46)1∕3 ‖$‖

2F∕3%F(ℝ3)√
|4| . (4.15)

Next, we note that the operator family j4(⋅) is analytic in the strip 0 < ℜh < 1, continuous and uniformly bounded in
its closure 0 ≤ ℜh ≤ 1, the latter observation being an immediate consequence of the estimates (4.14) and (4.15). Hence,
Stein’s complex interpolation theorem (cf. [25, Thm. 1]) applies and yields

‖‖j4(k)‖‖ ≤ 12 12+k
1(46)1− 23 k

‖$‖(1−k3)F%F(ℝ3)
|4| 14+ k4 ,

for all k ∈ [0, 1]. Now Corollary 3.2 completes the proof for non-embedded eigenvalues, if we choose k = 3 − 3∕F ∈ (0, 1)
and observe that ‖‖N4‖‖ = ‖‖j4(3 − 3∕F)‖‖. If 4 ∈ (0,∞), then the same analysis applied for 4 + <X with X > 0 instead of 4 as
in the proofs of Theorems 1.1, 1.2 yields the result. □
4.4 Proof of Theorem 1.5

First, assume that 4 ∈ ℂ ⧵ [0,∞) and let S be the principal square root of 4. By the triangle inequality, we have
‖N4‖ ≤ 12|S| [‖‖|$|1∕2(−∆ − S)−1$1∕2‖‖ + ‖‖|$|1∕2(−∆ + S)−1$1∕2‖‖] ,

where the integral kernel reads now (cf. (3.5))

(−∆ − S)−1(B, C) = ;−√−S |B−C|46 |B − C| .
Using the pointwise estimate

||(−∆ − S)−1(B, C)|| ≤ (−∆)−1(B, C)
valid for all B, C ∈ ℝ with B ≠ C and S ∈ ℂ, we estimate as in [13, proof of Lem. 1]

‖‖|$|1∕2(−∆ ± S)−1$1∕2‖‖ ≤ ‖‖|$|1∕2(−∆)−1|$|1∕2‖‖ ≤ ‖‖|$|1∕2(−∆)−1∕2‖‖‖‖(−∆)−1∕2|$|1∕2‖‖ .
Finally, noticing that

‖‖(−∆)−1∕2|$|1∕2‖‖ = ‖‖|$|1∕2(−∆)−1∕2‖‖ = ⎛
⎜
⎜
⎜⎝

sup/∈'1(ℝ3)/≠0
∫ℝ3 |$||/|2
∫ℝ3 |∇/|2

⎞
⎟
⎟
⎟⎠

1∕2
,
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we arrive at the estimate

‖‖N4‖‖ ≤ 1√
|4|

⎛
⎜
⎜
⎜⎝

sup/∈'1(ℝ3)/≠0
∫ℝ3 |$||/|2
∫ℝ3 |∇/|2

⎞
⎟
⎟
⎟⎠
. (4.16)

We notice as before that the origin 4 = 0 trivially satisfies the estimate in (1.8). If 4 ∈ (0,∞), then by repeating the analysis
for 4 + <X with X > 0 (instead of 4) we see that the right-hand side of (4.16) dominates lim inf X→0± ‖‖N4+<X‖‖. The claimed
inclusion thus immediately follows from Corollary 3.2. □
5 OPTIMALITY OF THE BOUNDS

In this section we discuss two concrete examples which demonstrate the optimality of the constants corresponding
to the eigenvalue bounds for dimensions ) = 1 and ) = 3 in Theorem 1.1. Both examples are given in terms of dis-
tributional Dirac delta potentials, but an approximation by regular potentials is also mentioned. We do not consider
the delta potential in two dimensions because the constant 12 of Theorem 1.1 is not explicit (nonetheless, prelim-
inary computations confirm that the weak-coupling constant 82 = 164 is achieved by the Dirac delta potential also
for ) = 2).
5.1 The delta potential in one dimension

As described in Section 2, the operator':0 = '0+̇:0 in %2(ℝ)with: ∈ ℂ should be understood as the operator associated
with the quadratic form

ℎ:0[/] ∶= ∫ℝ ||/′′||2 + : |/(0)|2 , J(ℎ:0) ∶= '2(ℝ) .
One has ':0/(B) = /′′′′(B) , B ∈ ℝ ⧵ {0} ,J(':0) = {/ ∈ '4(ℝ ⧵ {0}) ∩ '3(ℝ) ∶ /′′′(0+) − /′′′(0−) = −: /(0)} . (5.1)

Note that the function values at 0 are well defined due to the Sobolev embedding'4(ℝ)↪ 13(ℝ). Since the perturbation
is a point interaction, it follows that 2ess(':0) = [0, +∞).
Let us look for eigenvalues of':0, i.e. we consider':0/ = S4/ with the convention

ℜS > 0 and ℑS > 0 . (5.2)

The general solution of the differential equation /′′′′ = S4/ in any open real interval reads
/(B) = 11;SB + 12;−SB + 13;<SB + 14;−<SB , (5.3)

where 11,12,13,14 are arbitrary complex numbers. Considering these general solution in the separate intervals (−∞, 0)
and (0, +∞), and imposing the integrability requirements (11,14 = 0 if B > 0 and 12,13 = 0 if B < 0) together with the
interface conditions at zero due to (5.1) (continuity up to the second derivative and the jump condition for the third deriva-
tive), we arrive at the condition

S3 = 123∕2 : ;−<6∕4 .
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In order to make this equation compatible with (5.2), we see that the point spectrum of ':0 is not empty if, and only if,arg: ∈ (6∕4, 76∕4), or equivalently,ℜ: < |ℑ:|. If this condition is satisfied,':0 possesses one eigenvalue corresponding
to the right-hand side put to the power 4∕3. Summing up,

2p(':0) = ⎧
⎪
⎨
⎪⎩

{14 :4∕3 ;−<6∕3} if ℜ: < |ℑ:| ,
∅ if ℜ: ≥ |ℑ:| .

Notice that the arguments of : for which the point spectrum is empty correspond to real points intersecting the half-axis[0, +∞). So any eigenvalue of ':0, if it exists, is necessarily discrete.
In particular, choosing : ∶= ;<k and varying k ∈ (6∕4, 76∕4), any boundary point of the closed disk {4 ∈ ℂ ∶ |4| ≤ 14}

except for the point 4 = 14 will be an eigenvalue of ':0. This proves the optimality of Theorem 1.1 for ) = 1 because
‖:0‖%1(ℝ) = |:| = 1.
Remark 5.1. One can also justify the optimality of the constant in the eigenvalue bound corresponding to the inclusion
(1.3) for ) = 1 in the limit X → 0+ by considering the following family of regular but singularly scaled potentials

0X(B) ∶= ⎧
⎪
⎨
⎪⎩

1X if |B| < X∕2,
0 otherwise.

Of course 0X → 0 in the sense of distributions as X → 0+. What is more, the point spectrum of':0X converges to the point
spectrum of':0 as X → 0+. This can be checked by explicitly solving the differential equations of the eigenvalue problem
in the separate intervals where 0X is constant and matching the solutions at the boundary points.
5.2 The delta potential in three dimensions

In analogy with the one-dimensional situation above, we consider the operator'46:0 = '0+̇46:0 in %2(ℝ3)with : ∈ ℂ
associated with the quadratic form

ℎ46:0[/] ∶= ∫ℝ3 |∆/|2 + 46: |/(0)|2 , J(ℎ46:0) ∶= '2(ℝ3) .
Again, 2ess('46:0) = [0, +∞).
Let us look for eigenvalues of'46:0 corresponding to radially symmetric eigenfunctions. That is, we consider the equa-

tion '46:0/ = S4/ with the same convention (5.2) as above and look for special solutions of the form /(B) = n(|B|)
with n ∈ '2((0,∞), o2 )o). These eigenvalues are determined by eigenvalues of the one dimensional operator j: in%2((0,∞), o2 )o) associated with the quadratic form

_:[n] ∶= ∫
∞

0 |o−1[on′(o)]′|2 o2 )o + : |n(0)|2 , J(_:) ∶= '2((0,∞), o2 )o) .
Using the unitary transform p ∶ %2((0,∞), o2 )o)→ %2((0,∞), )o) which acts as (pn)(o) ∶= on(o), the operator j: is
unitarily equivalent to the operator j̃: ∶= pj:p−1 in %2((0,∞)) associated with the quadratic form

_̃:[q] ∶= ∫
∞

0 |q′′(o)|2 )o + : |q′(0)|2 , J(_̃:) ∶= '2((0,∞)) ∩ '10((0,∞)) .
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One has j̃:q(o) = q′′′′(o) , B ∈ (0,∞) ,J(j̃:) = {Y ∈ '4((0,∞)) ∩ '10((0,∞)) ∶ q′′(0) − :q′(0) = 0} .
The boundary values at 0 arewell defined due to the Sobolev embedding'4((0,∞))↪ 13([0,∞)). Considering the general
solution (5.3) of the differential equation q′′′′ = S4q and imposing the integrability requirement (i.e. 11,14 = 0) together
with the boundary conditions at 0, we arrive at the condition

S = 121∕2 : ;<6∕4 .
In order to make this equation compatible with (5.2), we see that the point spectrum of j: is not empty if, and only if,arg: ∈ (36∕4, 56∕4), or equivalently,ℜ: < −|ℑ:|. If this condition is satisfied, j: possesses one eigenvalue correspond-
ing to the right-hand side put to the power 4. Summing up,

2p(j:) = ⎧
⎪
⎨
⎪⎩

{−14 :4} if ℜ: < −|ℑ:|,
∅ if ℜ: ≥ −|ℑ:|.

Notice that the arguments of : for which the point spectrum is empty correspond to real points intersecting the half-axis[0, +∞) = 2ess(j:). So any eigenvalue of j:, if it exists, is necessarily discrete.
In particular, choosing : ∶= ;<k and varying k ∈ (36∕4, 56∕4), any boundary point of the closed disk {4 ∈ ℂ ∶ |4| ≤ 14}

except for the point 4 = 14 will be an eigenvalue of '46:0. This proves the optimality of Theorem 1.1 for ) = 3 because
‖46:0‖%1(ℝ3) = 46|:| = 46.
Remark 5.2. One can also justify the optimality of the constant in the eigenvalue bound corresponding to the inclusion (1.3)
for ) = 3 in the limit X → 0+ by considering the following family of regular but singularly scaled potentials

0X(B) ∶= ⎧
⎪
⎨
⎪⎩

146X3 if |B| < X,
0 otherwise.

Of course 0X → 0 in the sense of distributions as X → 0+. What is more, restricting to radially symmetric eigenfunctions,
the point spectrum of'46:0X converges to the point spectrum of'46:0 as X → 0+. This can be checked by explicitly solving
the radial parts of the differential equations of the eigenvalue problem in the separate intervals where 0X is constant and
matching the solutions at the interface point o = X.
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