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Abstract. We prove sharp Lieb-Thirring inequalities for Schrödinger operators with po-

tentials supported on a hyperplane and we show how these estimates are related to Lieb-

Thirring inequalities for relativistic Schrödinger operators.

1. Introduction

The Cwikel-Lieb-Rozenblum and the Lieb-Thirring inequalities estimate the number and
moments of eigenvalues of Schrödinger operators −∆− V in L2(RN ) in terms of an integral
of the potential V . They state that the bound

tr(−∆− V )γ− ≤ Lγ,N
∫

RN

V (x)γ+N/2+ dx (1.1)

holds with a constant Lγ,N independent of V iff γ ≥ 1/2 for N = 1, γ > 0 for N = 2
and γ ≥ 0 for N ≥ 3. Here and below t± := max{0,±t} denotes the positive and negative
part of a real number, a real-valued function or a self-adjoint operator t. In particular, the
problem of finding the optimal value of the constant Lγ,N has attracted a lot of attention
recently. We refer to the review articles [H2, LW2] for background information, references
and applications of (1.1).

The purpose of the present paper is twofold. First, we would like to find an analog of in-
equality (1.1) for Schrödinger operators with singular potentials V (x) = v(x1, . . . , xd)δ(xN ),
d := N − 1, supported on a hyperplane. It turns out that such an inequality is indeed valid,
provided the integral on the right hand side of (1.1) is replaced by∫

Rd

v(x1, . . . , xd)
2γ+d
+ dx1 . . . dxd .

We determine the complete range of γ’s for which the resulting inequality holds. Moreover,
we find the sharp values of the constants for γ ≥ 3/2 by using the method of ‘lifting with
respect to the dimension’. This provides yet another example of the power and flexibility of
this method, which was used by Laptev and Weidl [LW1] to obtain the sharp constants in
(1.1) for γ ≥ 3/2.

The second purpose of this paper is to point out a relation between the Schrödinger oper-
ator −∆− v(x1, . . . , xd)δ(xN ) in L2(RN ) and the relativistic Schrödinger operator

√
−∆−

v(x1, . . . , xd) in L2(Rd). Note that the space dimension d = N−1 of the relativistic operator
differs from that of the non-relativistic operator. The basic idea is to relate eigenfunctions of
the Schrödinger operator with singular potential to eigenfunctions of a non-linear eigenvalue
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problem involving the relativistic Schrödinger operator. This construction is essentially the
Poisson extension and is implicit in several earlier works, e.g., in [CL, FS, CS]. In our
context the connection between the two operators becomes useful when combined with a
monotonicity argument in the spirit of the Birman-Schwinger principle. It allows us both
to prove the singular analog of inequality (1.1) and to (slightly) improve upon the known
constants in Lieb-Thirring inequalities for relativistic Schrödinger operators.

2. Schrödinger operators with surface potentials

2.1. Main results. In this section we consider the operator

H(v)u = −∆u in Rd+1
+ := {(x, y) : x ∈ Rd, y > 0} (2.1)

together with boundary conditions of the third type

∂u

∂ν
− vu = 0 on Rd × {0} . (2.2)

Here ∂/∂ν = −∂/∂y denotes the (exterior) normal derivative and v a real-valued function
on Rd. If v is form-compact with respect to

√
−∆ in L2(Rd), then H(v) can be defined as a

self-adjoint operator in L2(Rd+1
+ ) by means of the quadratic form∫∫

Rd+1
+

|∇u|2 dx dy −
∫

Rd

v(x)|u(x, 0)|2 dx, u ∈ H1(Rd+1
+ ) . (2.3)

The negative spectrum of H(v) consists of eigenvalues of finite multiplicities. We shall prove

Theorem 2.1 (Lieb-Thirring inequalities for surface potentials). The inequality

tr [H(v)]γ− ≤ Sγ,d
∫

Rd

v(x)2γ+d+ dx (2.4)

holds for all 0 ≤ v ∈ L2γ+d(Rd) iff

γ > 0 if d = 1, and γ ≥ 0 if d ≥ 2 . (2.5)

Inequality (2.4) reflects the correct order of growth in the strong coupling limit, as can be
seen from the Weyl-type asymptotics

lim
α→∞

α−2γ−d tr [H(α v)]γ− = Lcl
γ,d

∫
Rd

v(x)2γ+d+ dx , (2.6)

with

Lcl
γ,d := 2−dπ−d/2

Γ(γ + 1)
Γ(γ + d/2 + 1)

. (2.7)

Since relation (2.6) is not completely standard we comment on its proof in Remark 3.7 below.
Our second result concerns the constants in the bounds of Theorem 2.1. Denoting by Sγ,d

the sharp constant in (2.4) we infer from (2.6) that

Sγ,d ≥ Lcl
γ,d . (2.8)

We shall prove that for sufficiently large values of γ one actually has equality.

Theorem 2.2 (Sharp constants). Let d ≥ 1 and γ ≥ 3/2. Then the sharp constant in
(2.4) is Sγ,d = Lcl

γ,d.
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We prove this theorem in Subsection 2.2. Besides the sharp constants for γ ≥ 3/2 our
method yields explicit and tight bounds for Sγ,d for arbitrary γ. In particular, we prove

Sγ,d ≤
π√
3
Lcl
γ,d if 1 ≤ γ < 3/2 and d ≥ 1,

Sγ,1 ≤ 2Lcl
γ,1 if 1/2 ≤ γ < 1 and d = 1, (2.9)

Sγ,d ≤
2π√

3
Lcl
γ,d if 1/2 ≤ γ < 1 and d ≥ 2,

see Remark 2.4. Moreover, the constants in the estimates for the number of negative eigen-
values satisfy

S0,2 ≤ 6.04Lcl
0,2 if γ = 0 and d = 2, (2.10)

S0,3 ≤ 6.07Lcl
0,3 if γ = 0 and d = 3, (2.11)

S0,d ≤ 10.332Lcl
0,d if γ = 0 and d ≥ 4, (2.12)

see Remark 2.4 and Subsection 3.3. The upper bounds (2.10), (2.11) can be supplemented
by the lower bounds

S0,2 ≥ 4Lcl
0,2 if γ = 0 and d = 2, (2.13)

S0,3 ≥ 3Lcl
0,3 if γ = 0 and d = 3, (2.14)

see Subsection 3.3. In particular, for d = 2 the upper bound (2.10) is off by at most a
factor 1.51.

2.2. Lifting with respect to dimension. In this subsection we use an argument in the
spirit of Laptev and Weidl [LW1] to prove

Theorem 2.3. Let d ≥ 1, γ ≥ 3/2 and τ ≥ 0. Then

tr [H(v) + τ ]γ− ≤ L
cl
γ,d

∫
Rd

(
v(x)2+ − τ

)γ+d/2
+

dx (2.15)

with Lcl
γ,d defined in (2.7).

Choosing τ = 0 and recalling (2.6) we obtain Theorem 2.2.

Proof. We shall prove Theorem 2.3 by induction over d. It is convenient to reflect the
dependence on d in the notation of the quadratic form, so we write

hd(v)[u] :=
∫∫

Rd+1
+

|∇u|2 dx dy −
∫

Rd

v(x)|u(x, 0)|2 dx dy

and Hd(v) for the associated operator. Note that this operator is also well-defined for
d = 0 and v a non-negative real number. Indeed, in this case one has H0(v)u = −u′′
and u′(0) = −vu(0) for u ∈ domH0(v), and one easily finds that H0(v) has one negative
eigenvalue, namely −v2

+. Hence

trL2(R+) [H0(v) + τ ]γ− =
(
v2
+ − τ

)γ
+
,

which is the analog of (2.15) for d = 0 and all γ ≥ 0.
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Now we fix d ≥ 1 and assume that the assertion is already proved for all smaller dimen-
sions. We write x = (x1, x

′) with x1 ∈ R, x′ ∈ Rd−1 and note that

Hd(v) + τ ≥ − d2

dx2
1

⊗ 1L2(Rd
+) − [Hd−1(v(x1, ·)) + τ ]−

with the identification L2(Rd+1
+ ) = L2(R)⊗L2(Rd

+). Hence the variational principle and the
operator-valued Lieb-Thirring inequality from [LW1] yields for all γ ≥ 3/2

trL2(Rd+1
+ ) [Hd(v) + τ ]γ− ≤ L

cl
γ,1

∫ ∞
−∞

trL2(Rd
+) [Hd−1(v(x1, ·)) + τ ]γ+1/2

− dx1. (2.16)

By induction hypothesis, the right hand side is bounded from above by

Lcl
γ,1L

cl
γ+1/2,d−1

∫ ∞
−∞

(∫
Rd−1

(v(x1, x
′)2+ − τ)γ+d/2+ dx′

)
dx1 = Lcl

γ,d

∫
Rd

(v(x)2+ − τ)γ+d/2+ dx ,

which establishes the assertion for dimension d and completes the proof of Theorem 2.3. �

Remark 2.4. The above approach can be used to prove inequality (2.4) for γ ≥ 1/2 and to
obtain bounds (2.9) for the sharp constants Sγ,d. Indeed, according to [HLW] and [DLL] the
operator-valued inequality (2.16) holds with an additional factor of π/

√
3 on the right hand

side if γ ≥ 1, with an additional factor of 2 if 1/2 ≤ γ < 1 and d = 1 and with an additional
factor of 2π/

√
3 if γ ≥ 1/2 and d ≥ 2.

Similarly, one can use the operator-valued inequality from [FLS2] (see also [H1]) to prove
(2.4) for γ ≥ 0 and d ≥ 3 and to obtain (2.12). Extending the original proof of Lieb and
Thirring [LT] to the operator-valued case would yield (2.4) for γ > 0 and d = 2. However,
we do not know how to prove (2.4) with the operator-valued approach for 0 < γ < 1/2 if
d = 1 and for γ = 0 if d = 2. We give a proof based on a different idea in Subsection 3.3
below.

2.3. Additional remarks.

2.3.1. Magnetic fields. Let A ∈ L2,loc(Rd+1
+ ,Rd+1) and let the operator H(A, v) be defined

through the closure of the quadratic form∫∫
Rd+1

+

|(−i∇−A)u|2 dx dy −
∫

Rd

v(x)|u(x, 0)|2 dx, u ∈ C∞0 (Rd+1
+ ) .

By a similar argument as in [LW1] one can prove that Theorem 2.3 remains true, with the
same constant, if H(v) is replaced by H(A, v). More generally, all the inequalities sketched
in Remark 2.4 remain true. The argument behind Theorem 2.1, however, allows only A

which are independent of y and orthogonal to the y-direction, see Remark 3.5. To obtain
the analog of (2.4) for the complete range of γ’s given in (2.5), one can rely upon an abstract
operator-theoretic argument, see [R] for γ = 0 and [F] for γ > 0.

2.3.2. Leaky graph Hamiltonians. In the previous subsections we studied eigenvalues of the
Laplacian H(v) on the halfspace with a perturbation by boundary conditions. This problem
is essentially equivalent to the study of eigenvalues of the Schrödinger operator

H̃(v) = −∆− v(x)δ(y)
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in the whole space Rd+1 with a potential supported on a hyperplane. The precise definition
of the operator H̃(v) in L2(Rd+1) is given via the quadratic form∫∫

Rd+1

|∇u|2 dx dy −
∫

Rd

v(x)|u(x, 0)|2 dx, u ∈ H1(Rd+1) .

The decomposition of a function into an even and an odd part with respect to the variable
y induces an orthogonal decomposition of the space L2(Rd+1), which reduces the operator
H̃(v). The part of H̃(v) on odd functions is unitarily equivalent to the Dirichlet Laplacian
on Rd+1

+ , whereas the part on even functions is unitarily equivalent to H(1
2v). Hence

tr
[
H̃(v)

]γ
−

= tr
[
H(1

2v)
]γ
− ,

and we obtain immediately the analogs of Theorems 2.1 and 2.2.

Theorem 2.5. The inequality

tr
[
H̃(v)

]γ
−
≤ S̃γ,d

∫
Rd

v(x)2γ+d+ dx (2.17)

holds for all 0 ≤ v ∈ L2γ+d(Rd) iff

γ > 0 if d = 1, and γ ≥ 0 if d ≥ 2 . (2.18)

Theorem 2.6. Let d ≥ 1 and γ ≥ 3/2. Then the sharp constant in (2.17) is S̃γ,d =
2−2γ−dLcl

γ,d.

2.3.3. Complex-valued surface potentials. In applications one often encounters the bound-
ary value problem (2.1), (2.2) with a complex-valued function v, which leads to non-real
eigenvalues. If v is sufficiently regular, the quadratic form (2.3) generates an m-sectorial
operator which we continue to denote by H(v). We denote by λj(v), j = 1, 2, . . ., the (at
most countably many) eigenvalues of H(v) in the cut plane C \ [0,∞), repeated according
to their algebraic multiplicities. Following the approach suggested in [FLLS] one obtains

Theorem 2.7. Let d ≥ 1 and γ ≥ 1.
(1) For eigenvalues with negative real part∑

j: Reλj(v)<0

(−Reλj(v))γ ≤ Sγ,d
∫

Rd

(Re v(x))2γ+d− dx .

(2) If κ > 0, then for eigenvalues outside the cone {| Im z| < κRe z}∑
j: | Imλj(v)|≥κReλj(v)

|λj(v)|γ ≤ 21+γ+d/2

(
1 +

2
κ

)2γ+d

Sγ,d

∫
Rd

|v(x)|2γ+d dx .

Here Sγ,d is the constant from (2.4).

2.3.4. Waveguides. Let ω ⊂ Rd be a domain of finite measure and put Ω := ω × R+ and
Γ := (∂ω)× R+. The quadratic form (2.3), restricted to {u ∈ H1(Ω) : u = 0 on Γ}, defines
a self-adjoint operator Hω(v) in L2(Ω), which corresponds to Dirichlet boundary conditions
on Γ and boundary conditions of the third type on ω × {0}. By the variational principle
Theorem 2.1 implies that

tr [Hω(v)]γ− ≤ Sγ,d
∫
ω
v(x)2γ+d− dx
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for γ > 0 if d = 1 and γ ≥ 0 if d ≥ 2 with the constant Sγ,d from (2.4). In particular,
Sγ,d = Lcl

γ,d for γ ≥ 3/2. We now show that in the special case where v ≡ v0 is a constant,
the estimate with the semi-classical constant holds already for γ ≥ 1.

Theorem 2.8. Let ω ⊂ Rd be a domain of finite measure and v ≡ v0 > 0 a constant. Then
for any γ ≥ 1

tr [Hω(v)]γ− ≤ L
cl
γ,d |ω| v

2γ+d
0 . (2.19)

Proof. By separation of variables one has

tr [Hω(v)]γ− = tr
[
−∆D

ω − v2
0

]γ
− ,

where −∆D
ω denotes the Dirichlet Laplacian on ω. Therefore the assertion follows from the

Berezin-Li-Yau inequality; see [B, LY] and also [L]. �

The same argument shows that if ω is tiling (in particular, any interval ω if d = 1), then
(2.19) holds for all γ ≥ 0; see [P].

3. Relativistic Schrödinger operators

3.1. Statement of the results. In this section we derive a connection between Schrödin-
ger operators H(v) with surface potential in L2(Rd+1

+ ) and relativistic Schrödinger operators√
−∆ − v in L2(Rd). We begin by recalling Lieb-Thirring and Cwikel-Lieb-Rozenblum in-

equalities for the latter operator.

Proposition 3.1. The inequality

tr
[√
−∆− v

]γ
−
≤ Dγ,d

∫
Rd

v(x)γ+d+ dx (3.1)

holds for all 0 ≤ v ∈ Lγ+d(Rd) iff

γ > 0 if d = 1, and γ ≥ 0 if d ≥ 2 . (3.2)

This result is due to Daubechies [D]. The fact that the inequality is not valid for γ = 0
if d = 1 follows from the fact that

√
−∆ − v has a negative eigenvalue for any non-trivial

v ≥ 0 if d = 1. This can be proved as in [S, Prop. 7.4].
The Weyl-type asymptotics in the relativistic case read

lim
α→∞

α−γ−d tr
[√
−∆− α v

]γ
−

= Dcl
γ,d

∫
Rd

v(x)γ+d+ dx , (3.3)

with
Dcl
γ,d := 2−dπ−d/2

Γ(γ + 1) Γ(d+ 1)
Γ(γ + d+ 1) Γ(d/2 + 1)

. (3.4)

We denote by Dγ,d the sharp constant in (3.1). In the case d = 3, the bound

Dγ,3 ≤ 6.08Dcl
γ,3 , γ ≥ 0 , (3.5)

is contained in [D]. Similarly one proves that for d = 2

Dγ,2 ≤ 6.04Dcl
γ,2 , γ ≥ 0 . (3.6)

We are now in position to state a result which connects relativistic Schrödinger operator
and non-relativistic Schrödinger operators with surface potentials. As usual, we denote by
N(−τ, T ) the number of eigenvalues, counting multiplicities, less than −τ of a self-adjoint,
lower semi-bounded operator T , and write N(T ) := N(0, T ).
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Theorem 3.2. Assume that v is form-compact with respect to
√
−∆. Then for any τ ≥ 0

one has
N(−τ,H(v)) = N(

√
−∆ + τ − v) . (3.7)

Moreover, for any γ > 0 and 0 < ρ < 1 one has

tr
[√
−∆− v

]γ
−
≤ tr [H(v)]γ/2− ≤

(
ρ√

1− ρ2

)γ
tr
[√
−∆− ρ−1v

]γ
−
. (3.8)

We shall prove this in Subsection 3.2 below, as well as the following

Corollary 3.3. The sharp constants in (2.4) and (3.1) coincide for γ = 0 and d ≥ 2,

S0,d = D0,d , (3.9)

and satisfy for any γ > 0 and d ≥ 1

γγ/2 dd/2

(γ + d)(γ+d)/2
Sγ/2,d ≤ Dγ,d ≤ Sγ/2,d . (3.10)

We shall use Theorem 3.2 in two directions. In Subsection 3.3 we shall use the known
Lieb-Thirring inequalities in the relativistic case to derive the Lieb-Thirring inequalities for
surface potentials. In Subsection 3.4 we shall use the estimates on the constants Sγ,d for
surface potentials to improve upon the estimates (3.5) and (3.6) in the relativistic case. We
also discuss the connection of our inequality with an inequality by Birman, Koplienko and
Solomyak.

3.2. Duality. The following lemma characterizes the negative eigenvalues of the operator
H(v) as the values −τ for which 0 is an eigenvalue of the operator

√
−∆ + τ − v.

Lemma 3.4. Assume that v is form-compact with respect to
√
−∆ and let τ > 0.

(1) Let f ∈ ker(
√
−∆ + τ − v) and define u(x, y) := (exp(−y

√
−∆ + τ)f)(x). Then

u ∈ ker(H(v) + τ) and u(x, 0) = f(x).
(2) Let u ∈ ker(H(v) + τ) and define f(x) := u(x, 0). Then f ∈ ker(

√
−∆ + τ − v) and

u(x, y) = (exp(−y
√
−∆ + τ)f)(x).

The proof of this lemma is straightforward and will be omitted (see [FS] for a similar
argument). Using a modification of the Birman-Schwinger principle we now give the

Proof of Theorem 3.2. Since the eigenvalues of the operators
√
−∆ + t − v are increasing

with respect to t, one has for any fixed τ ≥ 0

N(
√
−∆ + τ − v) = #m{t > τ : 0 is an eigenvalue of

√
−∆ + t− v} .

Here #m{. . .} means that the cardinality of {. . .} is determined according to multiplicities.
By Lemma 3.4, the right hand side coincides with

#m{t > τ : −t is an eigenvalue of H(v)} = N(−τ,H(v)) ,

as claimed.
To prove (3.8) we note that by the previous argument

tr [H(v)]γ/2− =
γ

2

∫ ∞
0

N(−τ,H(v)) τγ/2−1 dτ =
γ

2

∫ ∞
0

N(
√
−∆ + τ − v) τγ/2−1 dτ . (3.11)
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The elementary inequalities

ρ
√
λ+

√
1− ρ2

√
τ ≤
√
λ+ τ ≤

√
λ+
√
τ , λ, τ > 0, 0 < ρ < 1 ,

imply

N(−
√
τ ,
√
−∆− v) ≤ N(

√
−∆ + τ − v) ≤ N(−

√
1− ρ2

√
τ , ρ
√
−∆− v) .

Plugging this into (3.11) we obtain (3.8). �

Proof of Corollary 3.3. Equality (3.9) as well as the second inequality in (3.10) follow im-
mediately from equality (3.7) and the first inequality in (3.8). To prove the first inequality
in (3.10) we combine Daubechies’ inequality (3.1) with the second inequality in (3.8) to get

tr [H(v)]γ/2− ≤ Dγ,d

(
ρ√

1− ρ2

)γ
ρ−γ−d

∫
Rd

v(x)γ+d+ dx .

The assertion follows by optimizing over 0 < ρ < 1. �

Remark 3.5. The material in this subsection, except for the proof of the second part of
Corollary 3.3, is of abstract nature. If A is a non-negative operator in a Hilbert space H and
B is a self-adjoint operator which is relatively form-compact with respect to A, define the
operator H in L2(R+,H) by the quadratic form∫ ∞

0

(
‖F ′(y)‖2H + ‖AF (y)‖2H

)
dy − b[F (0)]

for F ∈ H1(R+,H)∩L2(R+, domA). Here b is the quadratic form of B. Then the argument
of this subsection yields

N(−τ,H) = N(
√
A2 + τ −B) .

As an application of this generalization one can extend Theorem 3.2 to relativistic Schrödin-
ger operators with magnetic field or to relativistic Schrödinger operators with a Hardy weight
subtracted (see [FLS1]).

3.3. Proof of Theorem 2.1. Theorem 2.1 is an immediate consequence of Proposition 3.1
and Theorem 3.2.

Moreover, Daubechies’ bounds (3.6), (3.5) yield the upper bounds (2.10), (2.11) for the
sharp constants S0,d. Similarly, the lower bounds (2.13), (2.14) follow from

D0,d ≥
2d−1

(d− 1)d
Γ (d+ 1)Dcl

0,d , d ≥ 2. (3.12)

(Note that this is only useful for d ≤ 7, since otherwise the factor on the right hand side is
smaller than one and the bound D0,d ≥ Dcl

0,d follows from (3.3).) The lower bound (3.12)
can be seen as follows. The definition of D0,d implies that if

∫
vd dx < D−1

0,d, then
√
−∆− v

is a non-negative operator. Hence∫
Rd

v|u|2 dx ≤
∫

Rd

|(−∆)1/4u|2 dx

for all u ∈ H1/2(Rd). Choosing v = α|u|2/(d−1) with α such that αd
∫
|u|2d/(d−1) dx =

(D0,d + ε)−1 and letting ε tend to zero, we find

D
−1/d
0,d

(∫
Rd

|u|2d/(d−1) dx

)(d−1)/d

≤
∫

Rd

|(−∆)1/4u|2 dx
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for all u ∈ H1/2(Rd). Hence D−1/d
0,d is not larger than the constant in the sharp Sobolev

inequality

S′d ‖u‖22d/(d−1) ≤
∥∥∥(−∆)1/4u

∥∥∥2
, S′d :=

d− 1
2

21/d π(d+1)/2d Γ
(
d+ 1

2

)−1/d

. (3.13)

see [LL, Thm. 8.4]. Recalling definition (3.4) of Dcl
γ,d we arrive at (3.12).

Remark 3.6. Instead of using the ‘relativistic’ Sobolev inequality (3.13) to prove (3.12) we
could have used a similar argument based on the sharp Sobolev trace inequality

S′d

(∫
Rd

|u|2d/(d−1) dx

)(d−1)/d

≤
∫∫

Rd+1
+

|∇u|2 dx dy , (3.14)

to directly prove (2.13), (2.14). The constant S′d in (3.14) is the same as in (3.13), see [E].
Indeed, an argument similar to our Lemma 3.4 was used in [CL] to derive (3.14) from (3.13).

Remark 3.7. Weyl-type asymptotics (2.6) can be proved by a bracketing argument, dividing
Rd+1

+ into domains Q×R+ with Q ⊂ Rd a small cube. An alternative proof can be based on
Theorem 3.2. Indeed, for γ = 0 the asymptotics (2.6) follow immediately from Theorem 3.2
and (3.3) (which is valid for all smooth v). If γ > 0 we write as in (3.11)

tr [H(α v)]γ− = γ

∫ ∞
0

N(−τ,H(α v)) τγ−1 dτ = γ

∫ ∞
0

N(
√
−∆ + τ − α v) τγ−1 dτ .

For smooth v one can justify that this is asymptotically equal as α→∞ to

γ

∫ ∞
0

∫∫
{(x,ξ)∈Rd×Rd:

√
|ξ|2+τ−αv(x)<0}

dx dξ

(2π)d
τγ−1 dτ

= γLcl
0,d

∫ ∞
0

∫
Rd

(
(αv(x))2+ − τ

)d/2
+

dx τγ−1 dτ

= α2γ+dLcl
γ,d

∫
Rd

v(x)2γ+d+ dx .

This concludes the sketch of (2.6). We note that by a standard argument based on Theo-
rem 2.1, the asymptotics (2.6) extend to all v for which the right hand side is finite if γ > 0
and d = 1 or if γ ≥ 0 and d ≥ 2.

3.4. Relation with the BKS inequality. In this subsection we shall use Theorem 3.2 to
improve upon known constants for relativistic Schrödinger operators and discuss its relation
with an inequality by Birman, Koplienko and Solomyak. We begin with a result about
massive relativistic Schrödinger operators.

Remark 3.8. Let d ≥ 3 and m ≥ 0. Then

N(
√
−∆ +m2 −m− v) ≤ 10.332Dcl

0,d

∫
Rd

(
(v(x) +m)2+ −m2

)d/2
+

dx . (3.15)

This improves upon Daubechies’ bound [D] who obtains (3.15) with constant 14.14Dcl
0,3 for

d = 3. To prove (3.15) we combine Theorem 3.2 and Remark 2.3 to get

N(
√
−∆ +m2−m− v) = N(−m2, H(v+m)) ≤ 10.332Lcl

0,d

∫
Rd

(
(v(x) +m)2+ −m2

)d/2
+

dx ,

and recall that Lcl
0,d = Dcl

0,d .
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We return again to the massless case m = 0.

Remark 3.9. The sharp constants in (3.1) satisfy

Dγ,2 ≤
√

3πDcl
γ,2 if 2 ≤ γ < 3 and d = 2,

Dγ,2 ≤ 4Dcl
γ,2 if γ ≥ 3 and d = 2, (3.16)

Dγ,3 ≤
15π
8

Dcl
γ,3 if γ ≥ 3 and d = 3.

This improves upon (3.6) and (3.5). To prove the first inequality in (3.16) we combine (3.10)
with (2.9) to get

D2,2 ≤
π√
3
Lcl

1,2 =
√

3πDcl
2,2 .

By the argument of Aizenman and Lieb [AL], this implies Dγ,2 ≤
√

3πDcl
γ,2 for all γ ≥ 2.

The other bounds in (3.16) are proved similarly.

In conclusion we would like to recall a result by Birman, Koplienko and Solomyak.

Proposition 3.10. Let 0 < s < 1, γ ≥ 1 and A, B non-negative operators such that
tr(A−B)sγ+ <∞. Then

tr(As −Bs)γ+ ≤ tr(A−B)sγ+ (3.17)

In [BKS] this is proved under the additional assumption A ≥ B, but, as observed in [LSS],
this assumption can be removed in view of the operator inequality

As −Bs ≤ (B + (A−B)+)s −Bs .

Moreover, [LSS] contains an elementary proof of (3.17) in the case γ = 1. We deduce from
(3.17) and (1.1) that

tr(
√
−∆− v)γ− ≤ tr(−∆− v2

+)γ/2− ≤ Lγ/2,d
∫

Rd

v(x)γ+d+ dx, γ ≥ 1. (3.18)

Since the best known bounds on the constants Lγ/2,d for γ ≥ 1 coincide with those for Sγ/2,d,
Proposition 3.10 yields for γ ≥ 1 the same bounds on Dγ,d as our Theorem 3.2. In particular,
Remark 3.9 can also be derived via (3.18). In contrast, the γ = 0 result of Remark 3.8 cannot
be deduced via (3.18). It is interesting, in our opinion, to understand whether there is a
deeper connection between the s = 1/2 case of Proposition 3.10 and Theorem 3.2.
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