INEQUALITIES BETWEEN DIRICHLET AND NEUMANN
EIGENVALUES ON THE HEISENBERG GROUP

RUPERT L. FRANK AND ARI LAPTEV

ABSTRACT. We prove that for any domain in the Heisenberg group the k + 1 st
Neumann eigenvalue of the sub-Laplacian is strictly less than the k£ th Dirichlet
eigenvalue. As a byproduct we obtain similar inequalities for the Euclidean Laplacian
with a homogeneous magnetic field.

1. INTRODUCTION AND MAIN RESULT

Universal eigenvalue inequalities are a classical topic in the spectral theory of differ-
ential operators. Most relevant to our work here are comparison theorems between the
Dirichlet and Neumann eigenvalues \;(—Af) and \;(—AY), j € N, of the Laplacian
in a smooth, bounded domain 2 C R?. Note that A\;(—AY) < \;(—Af) for all j € N
by the variational characterization of eigenvalues. This trivial bound for j = 1 was
strengthened by Pélya [Pél] who observed that A\o(—AY) < A\ (—AF) for d = 2. Payne
[Pay|, Aviles [Avi] and Levine and Weinberger [LevWei| obtained further results in
this direction under suitable convexity assumptions on €2. A breakthrough was made
by Friedlander [Fri] who proved that

N (=AY < \(=Af)  foralljeN, (1.1)

without any curvature assumption on df). Later, Filonov [Fil] simplified Friedlan-
der’s proof, removed the smoothness assumption on 92 and showed that (1.1) is
strict for d > 2. While it is still open whether the Payne-Levine-Weinberger bound
Nira(—AY) < N (—AL) holds for non-convex domains in R?, the attention has re-
cently shifted to non-Euclidean analogues of (1.1) on Riemannian manifolds. Mazzeo
[Maz] has shown for instance that (1.1) holds for domains in hyperbolic space but may
fail for domains on the sphere; see also [AshLev] and [HsuWan].

Our goal in this paper to obtain the analogue of (1.1) on the Heisenberg group. In
this setting (1.1) was previously known only under rather restrictive and non-generic
geometric assumptions on (2. We have managed to remove these conditions and, as
a bonus, obtain similar inequalities for the Euclidean Laplacian with a homogeneous
magnetic field.
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The Heisenberg group H is the prime example of non-commutative harmonic anal-
ysis and we refer to [Ste] for background material. We consider H as R? with co-
ordinates (z,y,t) and the (non-commutative) multiplication (x,y,t) o (2/,y/,t') =
(x+2y+y,t+t —2(xy —yz')). The vector fields

0 0 0 0

are left-invariant and the sub-Laplacian on H is given by

B) 9\? B o\?
J— 2_ 2:_ —_ N — —_ N
X2_y (8x+2y8t) (ay 2x8t> .

We are interested in the Dirichlet and Neumann realizations of this sub-Laplacian on
domains 2 C H. The space Lo(f2) is defined with respect to the restriction to €2 of the
Lebesgue measure (which coincides with the Haar measure on H) and hence coincides
with its Euclidean counterpart. If €2 is understood, we denote the norm of u € Ly((2)
simply by ||u|. The Sobolev spaces on the Heisenberg group (in this context also
known as Folland-Stein spaces) are defined as follows. We denote by S'(Q) the space
of all u € Ly(R2) for which the distributional derivatives Xu and Yu belong to Ly(€2),
equipped with the norm (|| Xul + ||Yu|? + |[ul|?)*/2. The space S1(RQ) is defined as
the closure of C5°(Q2) in S*(€). The Dirichlet and the Neumann sub-Laplacians L
and LY on Q are defined as the self-adjoint operators in Ly(§2) corresponding to the
quadratic form

| X ul|? 4 [|Yu? —/Q(|Xu|2+|Yu|2) d dy dt

with form domains S 1(Q) and S'(Q), respectively. For any lower semi-bounded oper-
ator A with purely discrete spectrum (which is equivalent to its form domain being
compactly embedded into the underlying Hilbert space) we denote by A;(A), j € N,
the j-th eigenvalue of A, counting multiplicities. The variational principle implies im-
mediately the inequality \;(LY) < A\;(LE) for all j. Our main result is the analogue
of Friedlander’s inequality (1.1) on H. We shall prove

Theorem 1.1. Let Q0 C H be a domain of finite measure such that the embedding
SYHQ) C Ly(R2) is compact. Then Nj41(LY) < X\j(LE) for any j € N.

Remark 1.2. The assumption that the embedding S*(Q) C Lo(Q) is compact can be
relaxed. Indeed, our proof shows that if 2 C H is a non-empty domain of finite measure
(which implies that L5 has discrete spectrum) then the total spectral multiplicity of
the operator LY in the interval [0, \;(LY)) is at least j + 1.

Theorem 1.1 holds also on the higher-dimensional Heisenberg groups H?"*1: see
Section 3.

We close this introduction by commenting on the similarities and differences between
the proofs of (1.1) in the Heisenberg and in the Euclidean case. As emphasized
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by Mazzeo [Maz|, Friedlander’s proof of the Euclidean inequality (1.1) relies on the
existence, for any A > 0, of a function U such that

AU =\U  |VU| < VA|U]. (1.2)

Of course, on Euclidean space such functions are provided by U(z) = eiﬁm'“’, w e S,
Actually, an inspection of the proofs in [Fri, Fil] shows that the second, pointwise
property in (1.2) can be relaxed to the averaged property

/|VU|2dx < )\/ \U|? dx .
Q Q

Similarly, we will prove Theorem 1.1 by constructing functions U such that
—(XP+YHU =N, XUl + YUl < MU, - (1.3)

This construction is described in Subsection 2.1 and constitutes the main novelty of
this paper. While it is easy to find explicit solutions U/, depending on a parameter
2" € R?, of the equation in (1.3), it seems rather difficult to prove that for given 2’ and
(2 the inequality in (1.3) is satisfied. Our way around this impasse is to show that the
energy inequality holds after averaging over 2’ € R?. We believe that this averaging
technique might have further applications beyond the present context.

For the sake of clarity we carry out the averaging procedure first for the two-
dimensional Landau operator. We emphasize that the connection between this op-
erator and the sub-Laplacian on the Heisenberg group was also essential in the recent
proof of sharp Berezin-Li-Yau inequalities on H [HanLap|; see also [Str]. Eigenvalue
inequalities for the Landau operator which we obtain along our way to Theorem 1.1
are presented in the final Section 3.

Acknowledgements. The authors acknowledge interesting discussions with A. Hans-
son concerning the topics of this paper. The first author wishes to thank E. Lieb and
R. Seiringer for helpful remarks.

2. PROOF OF THEOREM 1.1

2.1. Eigenfunctions of the two-dimensional Landau operator. For z = (z,y) €
R? let A(z,y) = 3(—y,z)" and D = —iV. For B > 0 the spectrum of the self-
adjoint operator (D — BA)? in Ly(R?) consists of the points B(2k — 1), k € N,
each being an eigenvalue of infinite multiplicity. Hence there exist infinitely many
linearly independent functions U on R? satisfying (D — BA)?U = B(2k — 1)U and
Jg2(D — BA)UPdz = B(2k — 1) [5. |U]*dz. It is a non-trivial question, however,
whether for a given domain Q one can find U’s such that [, [(D — BA)U]?dz <
B(2k —1) [, |U|*dz. That the answer is affirmative is the content of
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Proposition 2.1. Let B > 0, k € N and Q C R? a domain of finite measure. There
are infinitely many linearly independent functions U € C*°(2) N Lo(§2) satisfying

(D-BA)*U=B2k-1)U  inQ,
/ (D — BA)U|*dz < B(2k — 1)/ \U|*dz.
Q Q

In order to prove this proposition we use some properties of the spectral projection
PB corresponding to the eigenvalue B(2k — 1), k € N, of the operator (D — BA)? in
Ly(R?). This projection is an integral operator with integral kernel

B ; / /
P(z,4) = g em PO BB Ly (B - £P/2). (2.1)

We will choose the U’s in Theorem 2.1 as PZ(-,2') for different values of 2’. Indeed,

since PP is a projector corresponding to B(2k — 1), one has
(D, — BA(2))*PE(2,2') = B(2k — 1)PP(2,2) (2.2)

for any z’. In order to find z”’s for which the claimed energy bound holds we use the
following averaging lemma. It appeared in [Fra] in a different context and we include
here a proof for the sake of completeness.

Lemma 2.2. Let B >0 and k € N. Then for all z € R?

(D, — BA(2))PP(z,2)|?d? = B(2k — 1)/ |PE(2,2) | d~ . (2.3)
R2 R2

We emphasize that the integration in (2.3) is with respect to the variable z’. The
identity is also true (and easier to prove) when the integrals are performed with respect
to z with 2’ fixed. Our proof below does not use the explicit form (2.1), but only
that PP is smooth and is constant on the diagonal (which follows by the magnetic
translation covariance of the Landau operator).

Proof. We denote Q. := D, — BA(z) and abbreviate P := PP. Since P? = P, the
left side of (2.3) equals Q.Q. P(z,?')|,—.. Using this and that P(z,r) = B/2m, the
right side equals B?(2k — 1)/(27). Noting that Q?P(z,2) = B(2k — 1)P(z,2'), and
hence
B — B
QP(z, 7). = B2k = 1)~ and Q. P(z,2)|.e = B(2k — Do
7T T

it suffices to prove that

Now we expand Q. and Q. and write Q2 + @2 —2Q.Q. as a sum of three terms,

containing only derivatives of order zero, one and two, respectively. The zeroth

order term is easily seen to vanish if z = 2. The first order term is given by
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—2B (A(z) — A(Z)) - (D, + D./) and hence also vanishes if z = 2. Thus (2.4) is
equivalent to

(D?+ D2 +2D.D./) P(z,2)].—.. = 0.

The latter equality follows by differentiating the identity Py(z,z) = £ twice with
respect to z. This concludes the proof of (2.3). O

We now turn to the

Proof of Proposition 2.1. Recalling (2.2) we will look for U in the form PZ(-,2"). Ac-
cording to Lemma 2.2,

/RQ/QKDZ_BA(Z))PE(Z7Z/)|2dZdZ/:B(Qk’—1)/]Rz/§2\Pf(z,z’)|2dzdz’.

As observed in the proof of that lemma the right hand side equals B(2k —1)Z(| and
hence both sides are finite. Hence the set K of all 2’ € R? such that

/Q (D. — BA(2))PE (2, )2 d= < B(2k — 1) /Q PPz, )2dz (25)

has positive measure. To complete the proof we have to show that the set {xoPZ(-,2’) :
2" € K} is infinite dimensional.
By Fubini’s theorem there is an a € R such that I := {2/ € R: (2/,a) € K} has
positive measure. Let b € R such that I := {z € R : (z,b) € Q} is non-empty. We
claim that the functions P2((-,b),2'), 2/ € T, are linearly independent on I. Indeed,
if
N
ZajP,f((x,b),w(j)) =0 forall z € T
j=1

and some a; € C and w¥) = (sU) a) € T, then by (2.1)

N

> etk (B((w - sP)? + (a—1)%)/2) =0 forallz €],
j=1
where &; = e"BbS(j)/Z*B(S(j))Q/‘laj. Since the left-hand side of this identity is a real-

analytic function of z, it holds for all x € R. Letting x — oo one easily concludes that
a; = 0 for all j, and hence also a; = 0, as claimed. O

Remark 2.3. Proposition 2.1 has a three-dimensional analogue. Indeed, the same proof
shows that if B > 0, ¥ € N and Q C R? is a domain of finite measure there exist
infinitely many linearly independent functions U € C'*(£2) N Ly(£2), depending only
on the variables (z,y) € R?, such that

(Do) — BA(2,9))?U =B(2k - 1)U in Q,

/ (Diyyy — BA(2,y))UP dedydt < B2k — 1)/ U2 d dy .
Q Q
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2.2. Proof of Theorem 1.1. Given Remark 2.3, Theorem 1.1 follows similarly as in
[Fil]. We include the proof not only in order to make this paper self-contained, but
also since we have managed to simplify Filonov’s proof by avoiding the use of a unique
continuation result.

We abbreviate /\j-j := \;(LY) and similarly for the Neumann eigenvalues. Let j € N
be fixed and denote by @7, ..., ¢} orthonormal eigenfunctions corresponding to the
eigenvalues AP, ..., \P. Moreover, we choose k € N and 7 > 0 such that 47(2k — 1) =
/\JD . According to Remark 2.3 there exists a smooth function U on {2 depending only
on the variables (x,y) such that

(Do) — 47A(2,y))?U =472k — 1)U in Q,
/ (D) — 47A(z,y))U do dy dt < 47(2k — 1)/ \U|? dz dy dt .
@ Q

and such that e™U is linearly independent of ¢, ..., ¢ and of the space N spanned
by all Neumann eigenfunctions corresponding to eigenvalues less or equal to )\ﬁl. (We
emphasize that if /\j]\ﬁrl is degenerate, the dimension of N' might exceed j + 1, but is
finite by the compactness assumption.) With this choice of U the space

M = span{p?, ... ,gpf, e U}

is j 4+ 1-dimensional and hence by the variational principle

Xul|? + || Yul/?
W< XUVl .
0ZuEM [[ull

In order to estimate the Rayleigh quotient we write an arbitrary u € M as

J

u(@,y, 1) =Y il (z,y,1) + a;1e™U (2, y)

i=1

with constants ay, ..., a;.1 € C. Using the equation of the ¢ and their orthogonality

we obtain
J
1Xul? + [Vull? =3 APjas]? + |aj+1|2/ (]Xe”tU\Z + |Ye”tU|2> dz dy dt
i=1 Q

J
+2Re Z 10y / (XeiTtUXgoZD + YeiTtUngzD> dr dydt.
i=1 Q
Note that (Xe™U,Ye™U)" = ie'™(D(,,) — 47A(z,y))U. Integrating by parts, using
that P satisfies Dirichlet boundary conditions and recalling the equation in (2.6) for
U yields

/ (XemUX@,.D n YeiTtUchZD> dz dy dt
Q

= / e " (Dyyy) — 47A(2,9))2U ¢ dvdydt = 47(2k — 1) / e MU QP dx dy dt .
Q Q
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Moreover, by the estimate in (2.6)
/ (Ixemu]* + [ye™ul*) dudydr
Q

= / |(D(ey) — 47A (2, y)U P dx dy dt < 47(2k — 1)/ \U (2, )| dz dy dt .
Q Q

Hence, estimating AP < AP and recalling that 47(2k — 1) = A we obtain

J J
X u))? + [[Yul|* < AP <Z i |? + 2R62Wai/ e~ MU P da dy dt
Q

i=1 =1

Hagul? [ |U<x,y>|2dmdydt)
Q
D 2
= APl

By the variational principle, see (2.7), this implies that A}, < AP. Moreover, the
inequality in (2.7) is strict unless M C A. But this is impossible since we have
chosen €U to be linearly independent of A'. This proves Theorem 1.1.

3. TWO EXTENSIONS

3.1. The Landau operator. In this subsection we let d = 2 or d = 3. If d = 2
we use coordinates z = (z,y) and define A(z,y) = 3(—y,z)". If d = 3 we use
coordinates z = (z,y,t) and define A(z,y,t) := 3(—y,2,0)". For a domain Q C
R we put HL,(Q) == {u € Loy(Q) N HL(Q) : (D — A)u € Ly(Q)} with norm
(|(D — BA)u|* + ||u||2)1/2 and denote by HL , (Q) the closure of CS°(Q) in H A ().
The self-adjoint operators HY (B) and HY (B) in Ly(Q) are defined via the quadratic
forms

(D — BA)u|]* = / (D — BA)u|*dz
Q
with form domains HL, (Q) and HL, (), respectively.

Theorem 3.1. Let B > 0 and let Q C R?, d = 2,3, be a domain of finite measure
such that the embedding Hj, () C La(Q) is compact.

(1) If d = 2 let k € N and assume that HY(B) has j eigenvalues less or equal to
B(2k —1). Then HY(B) has j + 1 eigenvalues less than B(2k — 1).
(2) If d = 3 then \j 11 (HY (B)) < \j(HE(B)) for all j € N.

For d = 2 this result is only meaningful for k& > 2, since the spectrum of HE(B)
starts above B. Note that by the diamagnetic inequality |(D — BA)u| > |V]u|| the
compactness of H'(Q)) C Lo(Q) is sufficient for the compactness of H5, () C Lo(9).

Proof. First assume that d = 2. Let ¢f’,..., ¢} be the Dirichlet eigenfunctions cor-
responding to the eigenvalues less or equal B(2k — 1) and let AV be the subspace
generated by the Neumann eigenfunctions corresponding to the eigenvalues less or
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equal B(2k — 1). Let U be a function as in Proposition 2.1 which is linearly indepen-
dent of o, ... ,gij and A/. Then any function u in the span of ¢P, ... ,gof and U
satisfies by a similar calculation as in the proof of Theorem 1.1

/ (D — BA)u|? dz dy < B(2k — 1)/ 2 da dy
Q Q

Hence the (j + 1) st Neumann eigenvalue is less or equal to B(2k — 1), and equality
is excluded as before by linear independence of U and N.

Now let d = 3. Let ¢f’,..., ¢} be Dirichlet eigenfunctions corresponding to the
eigenvalues \P := N\(HE(B)), i = 1,...,j, and let A/ be the subspace generated
by the Neumann eigenfunctions corresponding to the eigenvalues less or equal )\év =
ANi(HY (B)). Since AP > AP > B we can choose k € Nand 7 € R such that B(2k—1)+
72 = AP. Let U be a function as in Remark 2.3 such that €U is linearly independent
of o7,...,¢P and N. Using that

/ (D, — BA(2))e™U|* dz = / (|(D(y) — BA(z,y))UP + 72|U) dz
Q Q

< (B(2k—1)+77) /Q le™ U2 dz

one finds that any function u in the span of ¢, ..., P and e'™U satisfies
/ (D — BA)u|*dz < )\f/ lul? dz
Q Q
and one derives the asserted inequality as before. 0

Robin boundary conditions

3.2. Higher dimensional Heisenberg groups. H?*"*!
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