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Abstract 

In this paper we develop a new approach to the theory of Fourier integral operators. It allows us to 
represent the Schwartz kernel of a Fourier integral operator by one oscillatory integral with a complex 
phase function. We consider Fourier integral operators associated with canonical transformations, 
having in mind applications to hyperbolic equations. As a by-product we obtain yet another formula 
for the Maslov index. 0 1994 John Wiley & Sons, Inc. 

0. Introduction 

Let M be a C"-manifold without boundary, dimM = n, and T*M\O be the 
cotangent bundle without the zero section. We consider the Lagrangian manifold 

A c (T*M\O) x (T*M\O) 

generated by a smooth homogeneous canonical transformation G : T* M\O - 
T*M\O. Let 

be a complex-valued smooth homogeneous function of degree 1 with non-negative 
imaginary part, and 

V(X, y, <) E C" (M x x WN\O)) 

c, = { (x ,  y9 5) : V& y, 0 = 0 1 . 
We say that 'p locally parametrizes the Lagrangian manifold A if in some neigh- 
borhood of a given point of A and in some local coordinates x ,  y we have 

A = { (x, CP,(X, y. 0) 9 (Y ,  ( ~ y ( x ,  Y ,  0) : (x,  Y ,  5) E & 1 . 
Functions parametrizing Lagrangian manifolds are usually called phase functions. 
A phase function is said to be non-degenerate if the differentials d ( q ,  ), . . . , d(cpy,) 
are linearly independent on C,. 
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Denote by Sm (MxMX(RN\O)) the class of smooth functions p(x, y .  6 )  defined 
on M x M x (RN\0) which admit the asymptotic expansion 

with pm-j(x, y, 6 )  homogeneous in of degree m - j .  The integral 

with a non-degenerate phase function cp and p E S" (MxMx(RN\O))  is called an 
oscillatory integral with amplitude p. This integral does not converge absolutely 
but it is interpreted as a distribution on M x M ;  see, for example, L. Hormander, [5], 
[6], and F. Treves, [ 141. A distribution which can be represented locally as a finite 
sum of oscillatory integrals (0.1) with real phase functions locally parametrizing 
the Lagrangian manifold A is called a Lagrangian distribution associated with A (or 
with the corresponding canonical transformation G). An operator, whose Schwartz 
kernel is a Lagrangian distribution, is said to be a Fourier integral operator. 

Analogous notions are introduced when G depends on an additional "time" 
parameter t, for example, when G is a Hamiltonian flow. Then 

A c T*R1 x(T*M\O)x(T*M\O) 

and all the functions and distributions depend also on t. The most common ex- 
ample of a Fourier integral operator depending on t is the operator exp(-itA) 
where A is a first-order elliptic pseudodifferential operator on M. In this case G is 
the Hamiltonian flow generated by the principal symbol of the pseudodifferential 
operator A. 

It was observed in [ 101 that Lagrangian manifolds in general do not allow a 
global parametrization by one real phase function cp. One of the obstacles of its 
global parametrization is the non-triviality of some cohomology class which is 
usually called the Maslov class. Besides, in the non-stationary case, this fact is 
motivated by the presence of the so-called caustics. It might be one of the reasons 
why the classical global theory of Fourier integral operators, developed in [5],  was 
based on the study of local oscillatory integrals (0.1). It leads, nevertheless, to 
some global objects such as the Maslov index, the Keller-Maslov bundle, etc. 

The main purpose of this paper is to propose another approach to Fourier 
integral operators. We find it to be simpler, and develop it when A is generated by 
a homogeneous canonical transformation. We apply this approach (instead of the 
classical one) to the study of the asymptotic distribution of eigenvalues in [13]. 

In this case we prove that the Lagrangian manifold can be parametrized by a 
global complex phase function. This allows us to represent a Lagrangian distribu- 
tion by only one oscillatory integral with a global complex phase function cp; see 
Sections 1 and 3. We prove its invariance, with the phase variables 17 E T;M\O in- 
stead of 6 E RN with some N. (Note that here the number of phase variables N = n 
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is the least possible.) In Section 1 we first introduce a class of non-degenerate 
complex phase functions cp globally parametrizing the Lagrangian manifold, and 
then study how the amplitude p depends on the choice of 9. It leads us to some 
new definitions of well-known global geometric objects. In particular, in Section 
2 we obtain a definition of the Maslov class and the Maslov index by means of 
de Rham cohomology; see [4] for various definitions of the Maslov index. 

In Proposition 2.3 we introduce an integer-valued function 0 related to caus- 
tics. It is also an invariant of the Lagrangian manifold A, which allows us to give 
another definition of the Maslov index. This definition has the advantage of being 
suitable for arbitrary (not necessarily closed) curves. An analogous approach has 
been developed by V. Arnol'd (see [ 11) for generic Lagrangian manifolds. 

In Section 3 we prove two theorems on the asymptotics of Fourier transforms 
clarifying the connection between 8 and the properties of the Lagrangian distri- 
bution. In fact, for a Riemannian manifold and the geodesic flow G the value of 
-0 along a geodesic curve coincides with its Morse index; see Section 4.2. 

As a corollary, we obtain that the Schwartz kernel of the operator exp(-itA) 
can be represented by only one oscillatory integral. In Section 4 we give an 
independent proof of this result for those readers who are not familiar with the 
theory of Lagrangian distributions. 

This paper is a recast and extended version of the preprint [9]. Note that 
complex phase functions have been applied to different problems earlier; see, for 
example, [ 1 I], [ 121, and [3]. The main idea of this paper is based on the use of 
such phase functions for the study of global properties of Lagrangian distributions. 

1. Time-Independent Distributions 

1.1. Global Phase Functions 
Let G be a smooth homogeneous canonical transformation in the cotangent 

bundle T*M\O. For (y,  7) E T*M\O let us denote 

G(y, 7) = (x  * (Y ,  71, E * ( Y ,  9)) . 
Then G(y ,  AT) = ( x * ( y ,  Q), At*(y, 7)) for all X > 0. We consider the Lagrangian 
manifold 

A = { (x ,  51, (y ,  -7) : (x,  <) = G(y, 7)) C (T*M\O) X (T*M\O) . 

It is clear that A is naturally parametrized by ( y , ~ )  E T*M\O, and this allows 
us to identify all objects (functions, cohomology classes, etc.) defined on A with 
those on T * M\O . 

A complex homogeneous function of degree 1 

cp(x;y,q) E C"(M x (T*M\O)) 

such that Imcp B 0 is said to be a phase function. We shall always assume that 
Im cp(x; y, 7) > 0 for x lying outside a small neighborhood of the point x * ( y ,  7) . 
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Denote by 9 the class of phase functions cp satisfying the following three 
conditions: 

Remark 1.1. The condition (1.3) is invariant. Indeed, when we change the 
coordinates x - f and y - 7 we obtain 

and therefore det aqi(p is not equal to zero for f = Z *  . 

LEMMA 1.2. Any phase function cp satisfying the conditions ( 1.1 )-( 1.3) gives 
a global parametrization of the Lagrangian manifold A. 

Proof Let us differentiate with respect to q the identity (1.1). In view of 
(1.2) we obtain 

Since the transformation G preserves the canonical 1-form 5 dx we have 

Therefore 

for x = x*(y ,  7). On the other hand, the Euler identity 

17 * c p 9 k  Y .  77) = cpk y .  q) 

implies that p(x; y ,  7) = 0 if cp&; y ,  q) = 0. So cp9(x; y ,  7) can be equal to zero 
only if x is sufficiently close to x *  (y ,  7). In view of (1.3) in a small neighborhood 
of the point x * ( y ,  q) the equation (1.5) may have only one solution with respect to 
x .  Therefore the equation (1.5) has the only one global solution x = x * ( y ,  7). By 
analogy, differentiating (1 .l) with respect to y and taking into account (1.2), (1.4), 
we obtain 

This completes the proof. 
'py (.* (Y,  71); Y ,  71) = -1) 1 
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(1.6) @,x = @,x(Y977) = @,(YJ?) . 

The condition (1.3) is equivalent to the fact that the matrix aX,(y, 7 )  (or @,(y, 7)) 
is non-degenerate for all (y, 7). 

Remark 1.3. In view of (1 .1)  and (1.5) the symmetric matrix a,,,, behaves as 
a tensor. Changing the coordinates y - 7 we obtain 

(1.7) 

By analogy, since the function Im cp(x; y, 7 )  of the variables x has a second-order 
zero at the point x = x * ( y , ~ ) ,  the imaginary part ImaXx of the matrix QXx is a 
tensor over the point X*  . This fact together with Im ~ ( x ;  y, 77) 2 0 implies also 

a?jq = (ag/ay) . a,, . (ag/ay)T I X=*. 

On account of the conditions (1.1) and (1.2), in any coordinate system 

where O( Ix - x* l 3  171) is homogeneous with respect to 7 of degree one. Differen- 
tiating the identity (1.9) with respect to n and 77 and taking into account (1.4), we 
obtain 

As the matrix a,,,, is symmetric we also have 

Consequently 

(1.10) a,, = -(x;)T.ax, = -av.x;  . 

With account of (1.3) this gives ker a,, = ker x; . Moreover, (1.8) and (1.10) yield 
Imam 2 0. 
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The matrices x; and 5; will be used very often later on. Since the transfor- 
mation G preserves the canonical 2-form dx A dc we have 

(1.11) ( [ ; ) * . x ;  - (x; ) ' .<;  = 0 

(in fact this also follows from (1.10) and the symmetry of @rill). Changing the 
coordinates x - f and y - y we have 

i.e., x; behaves as a tensor. The matrix 5; also behaves as a tensor with respect to 
y .  This is not true, however, with respect to x .  Indeed, passing from coordinates 
x to f we obtain 

Differentiating this identity with respect to 77 we see that 

(1.12) 

<* ( y ,  77) = (ax/afY I x=x* 5* ( y ,  77) * 

( a x / a a T  I f 4 9  * 5; (Y ,  77) = <; (Y ,  77) - C(Y, 77) * 2; (Y ,  77) 1 

where C = {Ci,} is the symmetric matrix-function with elements 

Here a2xk /d f id f j  are the second Taylor coefficients of x&) at the point I = f *  
which for fixed (y,$ can be chosen arbitrarily. Thus given coordinates I, an 
arbitrary real symmetric matrix CO and a fixed point ( y ,  7) we can find coordinates 
x such that in ( 1.12) C ( y ,  r ] )  = CO. 

1.2. Existence of Global Phase Functions 
To demonstrate the existence of phase functions satisfying the conditions (1.1)- 

(1.3) we shall prove the following lemma, which gives a natural example of the 
function 'p . 

Let us introduce on M a Riemannian metric g. For sufficiently close points 
x E M ,  y E M let yJs) be the "shortest" geodesic connecting y and x ,  i.e., 
the geodesic defined in the normal system of coordinates with origin at y .  We 
shall choose the parameter s such that yyx(0) = y , yyx(l) = x . We denote 
v ( y , x )  = j yx (0 )  E T y M ,  and smoothly extend v onto M x M .  Let b(x; y ,  q) be a 
smooth function positively homogeneous in 7) of degree 1 such that 

b ( x ; y , d  = o(Ix-x*121771) 9 x + x *  1 1771 - 00 9 

ImBxx(y, 77) > 0 , BXx = aXxbl X = X *  , 

and 
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for x # x * .  

LEMMA 1.4. The phase function 

satisfies the conditions (1.1 H1.3). 

Proof The conditions (1.1) and (1.2) are obviously fulfilled. Thus it remains 
to verify (1.3). Let us choose a local coordinate system. Then, in view of (l.lO), 

where 
1maxx = ImB,(y,T) > 0. 

By (1.10) Re 
-1m a,.. . x; imply 

.x; - (x; -Re ax, = 0. This formula and formula Im anl = 

(1.13) (Re @I,, - i Im a:,,) + Im . (Re ax, + i Im h,) 
= Re a:,, . Im@&' RecP,, + Im@rv. Im@;j . ImcP,, . 

The real matrix on the right-hand side of (1.13) is non-negative, and we obtain 
for any vector c' from its kernel 

n;;= 0 ,  <;;= 0 .  

But since the transformation G is non-degenerate then c' = 0. This completes the 
proof. 

Example 1.1. Given a Riemannian metric g on M we can take 

for x sufficiently close to x* (for x far from x*  we can take an arbitrary smooth 
extension with I m p  > 0). In particular, when M = R" with Euclidian metric the 
conditions (1.1H1.3) are fulfilled for the phase function 

1 
Cp(x;y,q) = (x  - x * ) .  <*  + - (x - x *  12 1771 . 

2 

We shall see below (Section 2.4) that in general there is no real phase function 
satisfying the conditions (l.lH1.3) globally. One can, however, always find a 
phase function which is real in a given small neighborhood. 
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PROFQSITION 1.5. Let (y0,qo) be a Jixed point from T*M\O, and xo = 
x* (yo, 770). Then in a neighborhood of the point xo there exists a coordinate system 
x such that 

Proof: 
view of (1.1 1) 

Let f be arbitrary coordinates in a neighborhood of the point XO. In 

2; (YO, 770) : ker (; (YO, 70) - ker ((;(yo, 70)) , 

and since the transformation G is non-degenerate, the rank of this map is maximal. 
Let Co be the orthogonal projection on ker ((;(yo, 70)) . Then C" . (; (yo, 70) = 0 
and therefore 

T 

The matrix on the right-hand side of this equality is strictly positive, consequently 
the matrix 

is non-degenerate. Choosing now coordinates x such that 
t; (Yo, 770) - @ * 2; (Yo, 770) 

(see (1.12)) we obtain (1.14). The proof is complete. 

Obviously, if (1.14) is fulfilled then in a neighborhood of the point (xo;yo,qo) 
the real phase function 

(1.15) (x - x * )  . J* 

satisfies the conditions (l . lH1.3),  and thus it gives a local parametrization of the 
Lagrangian manifold A. 

We shall need the following two lemmas. The first one implies that a phase 
function satisfying the conditions ( l . l H l . 3 )  locally can always be extended up to 
a phase function satisfying the conditions (1.1H1.3) globally. The second lemma 
states that the class 9 is connected. 

LEMMA 1.6. Let V be a closed conic subset of T * M\O and let W = {(x; y, 7) : 
(y, 7) E V, x = x*  ( y ,  7)) C M X (T*M\O). Let 'p be a phase function satisfyink 
(1.3) on V, and (l . l) ,  (1.2) on some (open) conic neighborhood Y C T*M\O of 
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the set W. Then there exist a phase function cpo E 9 and a conic neighborhood 
W C M X (T * M\O) of the set W such that cpo = cp on W . 

Proof Let $(x; y ,  9) be an arbitrary phase function from the class 9 with 
Im9, > 0, q, = ~ x x $ ~ x = x ~ ,  and with Im$ > 0 for x # x ’ ;  such a phase 
function exists due to Lemma 1.4. Let us choose two small neighborhoods W C 
W C M x (T*M\O) of the set W and a real-valued function p(x;y,q) E C”(M x 
(T*M\O)) positively homogeneous in 7 of degree 0 such that 0 5 p(x; y, 9) d 1 
on M x (T*M\O), p = 0 on W, and supp(1 - p)  C W .  Set 

c p o k  y ,  9) = (1 - A x ;  y ,  9)) p(x; y. 9) + p b ;  y ,  9) +(x; y ,  9) . 

It is easy to check, repeating the arguments from the proof of Lemma 1.4, that 
the constructed phase function 90 satisfies the requirements of Lemma 1.6 if W 
is a sufficiently small neighborhood of the set W. This completes the proof. 

LEMMA 1.7. Any phase function cpo E 9 can be continuously transformed in 
the class 9 into any other phase function cp1 E 9. 

Proof For 0 5 s 5 1 set 

where b(x; y, 77) is as in Lemma 1.4. By (1.8) and Lemma 1.4 cps satisfy (1.1H 1.3) 
for all s E [O,l]. The proof is complete. 

1.3. Global Oscillatory Integrals 

Let us introduce a “function” d ,  E C”(M x T*M\O) homogeneous in 7) of 
degree zero such that 

(1.17) 

for x close to x *  . Under change of coordinates J I  det ax,cpl behaves as a :-density 
with respect to x and as a (- ;)-density with respect to y, and we assume that Id, I 
has the same property. 

Lemma 1.2 immediately implies the following 

THEOREM 1.8. Let u(x, y) be a Lagrangian distribution associated with the 
Lagrangian manifold A. Then for any phase finction cp E 9 there exists an 
amplitude p(x; y ,  q) such that 

(1.18) u(x, y )  = (27V 1 eidxp(xly,rl) p(x;  y ,  7) Id&; y ,  dl dg 
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modulo a smooth half-density. 

Remark 1.9. Usually Lagrangian distributions are supposed to be half- 
densities. When we consider p in (1.18) as a function on M X (T*M\O) the 
properties of Id, I yield that the integral Se"+'p Id,l dq behaves precisely as a 
half-density in x and in y.  

Proof of Theorem 1.8: By the condition (1.3) the phase function 'p is non- 
degenerate. Therefore according to Theorem 25.4.7 from [8], a (local) oscillatory 
integral with an arbitrary phase function locally parametrizing A modulo a smooth 
function is equal to a (local) oscillatory integral with phase function 'p. Since a 
Lagrangian distribution is a locally finite sum of such oscillatory integrals, the 
same is true for the whole Lagrangian distribution u with some global amplitude 
P .  

DEFINITION 1.1. The Lagrangian distribution u and the oscillatory integral in 
(1.18) are said to be of order m if the amplitude p E S" . 

LEMMA 1.10. The oscillatory integral (1.18) of order m can be written in the 
form 

with p E S"-'. If in a local coordinate system for x close to x *  we have 

then in these coordinates 

where L is a jirst-order differential operator such that 

Proof Without loss of generality we may assume that the amplitude p has 
a small support with respect to x. If p is equal to zero in a neighborhood of the 
set {x = x*  1, then Im p(x; y, 17) > 0 on the support of p , and (1.18) is a smooth 
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half-density. Therefore we may assume also that x is sufficiently close to x*  and 
that (1.20) holds. 

Let us consider the oscillatory integral with amplitude (x - x * )  . r.  We can 
replace (x - x*)eiv by B-'V7(eiq), where B = B(x;y,  7) is a homogeneous non- 
degenerate matrix of degree zero, and B(x*;  y ,  7) = - i  aX,Jy, 7). Now, integrating 
by parts with respect to 9 we obtain an oscillatory integral with the same phase 
function and amplitude 

jj = ~d,,,-'div7(~d,+,~ ( B - ' ) T r )  E S"-' . 
The proof is complete. 

Remark 1 . 1  1 .  Lemma 1.10 implies that if p(x*; y ,  9) = 0 then we can de- 
crease the order of the amplitude by 1 .  If the amplitude p(x; y ,  7) has a zero of 
the order 2N - 1 or 2N at x = x * ,  however, then generally speaking, the order 
of the amplitude can be decreased by N. This happens because in the process of 
integrating by parts we differentiate the remaining factors (x - x * )  with respect to 
7. (In the special case x*  = y these derivatives are equal to zero, and in this case 
the order of the amplitude can be decreased exactly by the order of the zero of p 
at x = x*. )  

Iterating formula (1.19) we obtain the following 

COROLLARY 1.12. 

(27r)-" / e',+,p(x; y ,  71) Id&; y ,  41 d q  = (27r)-" / e"+'q(y, d Id&; y ,  $1 d9  . 

For any amplitude p(n; y ,  9) E S"' there exists an amplitude 
q(y, 7) E S" independent of x such that modulo a smooth function 

By Theorem 1.8 and Corollary 1.12 any Lagrangian distribution u(x, y) can be 
written modulo C" in the form 

u(x, y) = ( 2 ~ ) - "  (1.21) eivp(x;y,rl) q ( y ,  9) Id,(x;y, 711 d9  . J 
1.4. Principal Symbol 

Obviously, there are many amplitudes p(x; y ,  9) determining the same Lagran- 
gian distribution (1.18). In (1.21), however, the amplitude q (independent of x !) is 
defined almost uniquely by the Lagrangian distribution u and the phase function 
cp. We deduce this fact from the next theorem, but first we formulate 

DEFINITION 1.2. Let C = CI + iC2 be an n x n complex symmetric matrix 
the with CI 2 0 (Cl and C2 are real symmetric matrices). We denote by 

orthogonal projection on ker C and introduce 

det, C = det(C + nc). 
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We choose the branch of the argument of det, C such that it is continuous with 
respect to C on the set of matrices C with a fixed kernel and is equal to zero when 
c2 = o .  

Note that under the conditions of Definition 1.2 kerC = kerC1 r l  kerC2. In- 
deed, 

Therefore there exists a real orthogonal matrix J such that 

c o  J . C . J T =  ( o )  

with some non-degenerate c . By Definition 1.2 det, C = det c and the branch of 
the argument is chosen as explained in [6], Section 3.4. When C1 = 0, we obtain 

( 1.22) argdet,C = 

where sgnC2 is the signature of CZ; see [6],  
We will also use the following simple 

7r 5 sgnC2, 

Section 3.4. 

LEMMA 1.13. Let J be a non-degenerate real matrix. Then 

argdet, C = argdet, (JCJT) . 

Proof Let k = rank & . Then det, C coincides with the coefficient attached 
to ck in the polynomial det(C + EZ),  i.e., 

det, C = E - ~  det(C + E Z )  I E=O . 

For any non-degenerate real matrix J we have 

det, (JCJT) = cPk det(JCJT + E Z )  I E = O  

= det2J det(C + lIc(JTJ)-'Ilc) = det2J det+ (Il,(JTJ)-lIlc) det, C , 

and therefore arg det, C = argdet, (JCJT) + 27rk for some integer k. Since 
arg det, C continuously depends on C on the class of matrices with a fixed kernel 
and arg det, C = arg det, (JCJT) = 0 for a real non-negative matrix C , we obtain 
k = 0.  The proof is complete. 

THEOREM 1.14. Let qm be the leading term ofthe amplitude q in (1.21). Then 
the (non-smooth) function 

(1.23) 
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is uniquely determined by the Lagrangian distribution u and is independent of the 
phase function p E 9 and of the choice of coordinates y . 

Remark 1.15. Since (1.23) is independent of the choice of coordinates y and 
of the choice of the phase function, this function is an invariant. It can be called 
the principal symbol of the the Lagrangian distribution u. Usually the principal 
symbol is defined as a section of the Keller-Maslov bundle; see comment after 
Proposition 2.8, as well as [5] and [14]. Our aproach allows us to interpret the 
principal symbol as a non-smooth function defined on T * M , and not as a section 
of the Keller-Maslov bundle. 

Theorem 1.14 immediately implies 

COROLLARY 1.16. All the homogeneous terms of the amplitude q in (1.21) 
are uniquely determined by the Lagrangian distribution u and the phase function 
cp E 9. 

Proof of Corollary 1.16: If u is a smooth half-density then by Theorem 1.14 
all the homogeneous terms of the amplitude q are equal to zero. Thus, if u is 
represented by two different oscillatory integrals with the same phase function 
then all the homogeneous terms of the amplitudes must be equal. 

The proof of Theorem 1.14 is based on two auxiliary lemmas. Let us fix a 
point (yo, 70) and denote xg = x*  (yo, VO),  50 = [* (yo ,  70). Choose a local coordinate 
system x in a neighborhood of xg such that (1.14) is fulfilled, and introduce the 
matrix-function 

9 = 9(y , r l )  = (2  ?;). 
Taking into account (1.10) we obtain 

Therefore, in view of (1.3) and (1.14), 9 is non-degenerate and 

(1.24) ldetQl = Idet[;I Idetar,,I = Idet5;I IdlP12)x=x. . 

LEMMA 1.17. At the point (yo, 710) 

arg det, ( 9 / i )  = arg det, (aTT/i) - R sgn ((x; . 5; ) /2 . 

Proof: In view of (1.11) we have for E > 0 
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By (1.14) the matrix (.$IT .<; is strictly positive at the point (yo, 70). Multiplying 
(1.25) from both sides by ((G)T we see that for sufficiently small E > 0 
the matrix (1.23, and thus the matrix x; + e.$, is non-degenerate. 

The equalities ( 1.10) imply 

Since 9 is non-degenerate, the deteminant det+ of the matrix on the left-hand 
side of (1.26) is equal to 

det2(x; + ec;) det+ (!P/i) = CkE2k det+ ( Q / i )  + O ( E ~ ~ + ' )  , 

where k = dim kerx; and C& # 0 is independent of 9. 
Let c be the restriction of the matrix 

at; IT - r; (r; )T * ax,, 
0 

to the kernel of 

By (l.lO), (1.11) 

and ax,, Ikerx; = <; I k e r X ; .  Therefore the matrix is independent of 9. As the 
coefficient attached to e2k in the expansion for the determinant of (1.26) is non- 
zero, we have rankc = 2k. Therefore, the determinant det, of the matrix in the 
right-hand side of (1.26) modulo O ( E ~ ~ + ' )  is equal to 

= e2k det+ ( ( x ; ) ~  [;/i) det+ cdet+ (@,,,/i) 

(in the proof of this lemma the sign "=" means also the equality between the 
respective branches of the arguments). 
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Thus at the point (yo, 70) 

det, ( q / i )  = c det, (aV7/i)  , 

where c # 0 does not depend on 9. To compute the constant c we take a special 
phase function which coincides with (1.15) in a neighborhood of (xg; yo, 90) (by 
Lemma 1.6 such a phase function exists). For this phase function 

axx = 0 ,  ax7 = [; , av7 = -(x;F[; . 
The upper left block aXx of the corresponding matrix @ is zero, and so sgn $ = 0.  
By (1.22) we have 

det, (+/i) = det2[; 

with zero branch of the argument. This implies 

Therefore for an arbitrary phase function cp 

det+ (*/ill = det2G det;' (i(x;)Tt; ) det, (aVq/i)  1 (M,70) 

and, consequently, at the point (yo, 90) 

arg det, ( q / i )  = arg det, (aTq/ i )  - arg det, (i(x; )T . [; ) . 
From (1.22) it follows that 

(1.27) 

This completes the proof. 

R 
argdet, ( i (x ; )T .[ ; )  = - sgn((x;)*.[X) . 

2 

LEMMA 1.18. Let u be a Lagrangian distribution (1.21) of order m, and qm 
be the leading homogeneous term of the amplitude q. Let (1.14) be fulfilled. Then 
for any smooth finction p(x) which is equal to 1 at the point xo and which has 
sujiciently small support, we have 

(1.28) / e-ik'top(x)u(x, yo) dx 

- - Xme-iho.to (e i r sp"  (~r;)'.~)/4,-i(arSdet+(cp?,/i)/2 I dett; 1 - 1 / 2 ~ ~ ) l  
(YO.70) 

+ o(xm-'), h - +oo . 
Proof: Let us replace in the left-hand side of (1.28) the distribution u by the 

oscillatory integral (1.21) and change the variables 9 = XO. Then we obtain the 
integral 
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Now we apply the stationary phase method. Recall that the equation 

has the unique solution x = x * ,  and by (1.14) the equation 

also has the unique solution 6 = 70. Thus, the function cp(x;yo, 6 )  - x . <O has 
a unique stationary point x = XO, 6 = 770. Obviously, its Hessian at this point 
coincides with \Ir . Using the stationary phase formula we obtain 

By (1.24) we have at the point ( x o ; y o , ~ o )  

This equality and Lemma 1.17 imply (1.28). The proof is complete. 

Proof of Theorem 1.14: The coefficient attached to hm in the asymptotic 
formula (1.28) for the Fourier transform of the distribution p(x)u(x, yo) depends 
on the choice of the coordinate system but not on the phase function cp. Therefore 
the function (1.23) is also independent of 9. Lemma 1.13 and (1.7) imply that 
argdet, (@,Ji) (and thus (1.23)) is independent of the choice of coordinates y. 
Since this function cannot depend on the coordinates x ,  it is uniquely determined 
by the Lagrangian distribution u. The theorem is proved. 

2. Cohomology Classes and Existence of Real Phase Functions 

2.1. The Maslov Index 
In this subsection we recall the definitions of some geometrical objects con- 

nected with a Lagrangian manifold. Almost all these objects are well known. 
Their definitions, however, are based on some auxiliary technical results which 
will be proved in the next subsection. 

Let us choose a covering of A by small open neighborhoods U, and real phase 
functions cp, parametrizing A in these neighborhoods. We shall always assume 
for definiteness that the U, are contractible. 
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For ( y ,  7) E U ,  n Up we denote 

It is known that a,p are integers independent of (y ,q)  E U ,  f l  Up (see [5] or 
Lemma 2.5 below). The cocycle {U,  n Up,aap} generates a cohomology class 
in the tech  cohomology group H'(A,Z). This class is said to be the Maslov 
cohomology class of the Lagrangian manifold A. The value of this class on a 
closed curve y (i.e., the sum of a,p along y )  with sign minus is called the Maslov 
index of this curve and denoted by ind y. (Such an approach based on the local 
parametrization of A by real phase functions 'pa was suggested by L. Hormander 
in [5 ] . )  

The factor class modulo 4 of the Maslov cohomology class from H'(A,  Z4) is 
called the reduced Maslov class of A. The value 

ind4y = ind y (mod4) 

is said to be the reduced Maslov index of y .  The reduced Maslov class is naturally 
associated with a complex linear bundle over A which is called the Kelfer-Maslov 
bundle. By definition every real phase function 'pa gives a local trivialization of 
this bundle over U,, and the transition function for two different phases (P, and 
' p p  is equal to exp(ina,p/2). 

All the given definitions are independent of the choice of U ,  and the phase 
functions q, (see Theorem 2.6). Note that the reduced Maslov cohomology class 
(and therefore the Maslov cohomology class) might be non-trivial. The Keller- 
Maslov bundle, however, is always trivial, i.e., there exists its global section which 
is never equal to zero; see [5].  Such sections in general cannot be obtained by use 
of real phase functions. We shall see that they naturally appear when one deals 
with the global complex phase functions introduced in Section 1. 

2.2. Auxiliary Functions 92 and 8 

Let us introduce the integer-valued function 

9 ( y , 7 )  = rank x; (y, 7) 

on T * M\O. Obviously, 9 ( y ,  7) d n - 1 . The set of points ( y ,  7) where %(y, 7) < 
n - 1 is called the singular set of the Lagrangian manifold A .  Its projection on 
the manifold M is said to be the caustic set. 

We shall need the following lemmas. 

LEMMA 2.1. Let the phase function 'p satisjj the conditions (1 .l), (1.2) (not 
necessarily (1.3)). ForJixed local coordinates let n and l=I be the orthogonal pm- 
jections on kerx; and ker(x,*)T correspondingly, n' = ( I  - n), fI' = ( I  - R). 
Then 

(2.2) Zt(l=i.[n* en) # 0 ,  
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N 

where by det in the right-hand side we mean the determinants of the restrictions 
of these matrices to the corresponding subspaces. 

Proof: The identity ker x; r l  ker t; = (0) and formula (1.1 1) imply that the 
restriction of fi - 5; . n is a non-degenerate 9 x %"-matrix. Therefore (2.2) is 
fulfilled. From (1.1 1) it follows also that 

This fact and (1.10) imply that in special bases associated with orthogonal decom- 
positions R" = kerx; o I ~ ( x ; ) ~  and R" = ker ( x ; ) ~  o Imx; the matrix Qxl) is 
triangular, and its diagonal blocks are fi - ll and fi' - axl) . n'. This implies 
(2.3) and completes the proof. 

LEMMA 2.2. 
and y we have 

For any phase function cp E 9 and any coordinate systems x 

(2.4) det+ (aql)/i) = i" f det @xl) , 

where f = f ( y ,  q) is a (non-smooth) real-valued finction independent of cp (here 
we do not mean that the branches of the arguments necessarily coincide). Zf for 
coordinates x the inequality 

holds (see (1.14)), then 

Proof: By (1.10') 

Thus 
det+ (@,,,,/i) = i" &t (n' . ( x ; ) ~  - 0') & (0' ax. . n') . 

This equalitiy and (2.21, (2.3) imply (2.4) with a real function f independent of 9. 
When (2.5) is fulfilled we can take the phase function (1.15) and then obtain 

det, (al),,/i) = det, (i(x;IT . 5;) , det axl) = det 5; . 

This yields (2.6). The lemma is proved. 
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Let us choose some coordinates and consider the complex function det2aX,. 
The argument of this function does not depend on the choice of local coordinates 
x and y (see Remark 1.1); this is why we use det2&,, instead of detaX,,. We can 
now globally define on T*M\O the smooth multi-valued function 

fla = 6 & , d  = argdet2%,,(y,d 

(the branches of which differ by 27~). 

(2.8) 0 ( y ,  9) = (2~) - ' 6*  - n-'argdet, (aq7/i) + 9 / 2  . 

Obviously, the function 0 is multi-valued only due to the fact that 66 is multi- 
valued. On a simply connected open set we can always fix a particular smooth 
branch of 60, and this uniquely determines the values of 0 on this set. Since 
argdet, (a9,Ji) is independent of the choice of local coordinates y (see the proof 
of Theorem 1.14), the function 0 is independent of the choice of local coordinates 
x and y. 

Let us introduce the non-smooth multi-valued function 

PROPOSITION 2.3. The function 0 takes integer values, and it is independent 
of cp. The branches of 0 are continuous along any curve on which rankx,' is 
constant. 

Proof: 

By (1.10') rank 

The first statement of the proposition immediately follows from (2.4) 
and the fact that f is real and does not depend on cp. 

= rankx; . Therefore, arg det, ( @ , J i )  can have jumps only 
when rank a,,,, changes. This implies the second statement. The proof is complete. 

Proposition 2.3 implies, in particular, that 8 is smooth outside the singular set 

Below we prove the important Lemma 2.4 which will allow us to compute the 
of the Lagrangian manifold A. 

function 0 explicitily in some special cases (see Section 3). 

DEFINITION 2.1. For a real symmetric matrix C we denote by r+(C) and r-(C) 
the numbers of its positive and negative eigenvalues respectively. 

LEMMA 2.4. Let U C T*M\O be a connected and simply connected open set, 
and let cp be a phase function satisfying (1.1 )-( 1.3) and such that a,,,, is real on 
U .  Then the difference 

0 - r + & J  
is constant on U. In other words, the jumps of the function 0 on U coincide with 
the jumps of r+(a,,J.  

Proof The equalities (1.22) and (2.8) give in U 

0 = (%'+sgn@,,,)/2 + k ,  
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where k is an integer depending on the choice of the branch of Qa . By (1.10') we 
obtain 

rank@,,,, = 9 . 
These two equalities imply the lemma. 

Lemma 2.4 implies that given local coordinates x satisfying (2.3, we have on 
a connected and simply connected open set 

0 = r - ( ( x ? y  .[;) 

modulo some additive integer constant. Indeed, this fact immediately follows from 
Lemma 2.4 if we take the special phase function of the form (1,15). 

2.3. Another Definition of the Maslov Index 
Let us fix a complex global phase function cp and an open covering {U,}  with 

corresponding real phase functions (P, (see Section 2.1). By Proposition 2.3 in 
every neighborhood U, the difference 

coincides with a branch of the multi-valued function (27r)-'8a. This fact imme- 
diately implies the following 

LEMMA 2.5. On the intersection U, n Up the diflerence a, - ap  is an integel; 
and 

a, - up = a,p, 

where a,~ is defined in (2.1). 

Let us introduce the 1-form 

In every neighborhood U, we have C2a = do,. Therefore the value of the cocycle 
{U, n Up, u,p} on a closed curve y is equal to the integral of over this curve. 
It means that the de Rham cohomology class generated by Ra is the image of 
the Maslov cohomology class provided by the standard isomorphism of the Cech 
cohomology group and the de Rham cohomology group; see, for example, [15]. 
This shows that the definition of the Maslov cohomology class does not depend 
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on the choice of U ,  and pa, and the corresponding de Rham cohomology class 
is independent of p. The last statement also follows from Lemma 1.7. Indeed, 
in view of this lemma any two phase functions from 9 can be continuously 
transformed one into another in this class. But the considered cohomology class 
is integer-valued, and a continuous transformation can not change its values on 
closed curves. 

Thus we have proved 

THEOREM 2.6. The definition of the Maslov cohomology class does not depend 
on the choice of U ,  and cp,. For any global phase finction cp E 9 its value on a 
closed curve y is equal to 

indy = - l a g ,  

Since the reduced Maslov class is a factor of the Maslov cohomology class, it 
also does not depend on U ,  and pa and 

ind4y = - l o g  (mod4).  

Theorem 2.6 allows us to interpret the Maslov index of a curve y as the sum 
of jumps of the multi-valued function -0 (introduced in (2.8)) along y.  

THEOREM 2.7. For any closed curve y 

indy = - I d @ ,  
7 

and, respectively, 

ind4y = - / ? d @  (mod4). 

Proof By (2.8) we have 

The right-hand side of this equality is a non-smooth, single-valued function. 
Therefore the integal of its differential along the closed y is equal to zero. Con- 
sequently s? Rg = s? dO. The proof is complete. 

Using the function 0 we can define the Maslov index for an arbitrary (not 
necessarily closed) curve. Let y be a curve on A with initial point (y0,qo) and 
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end point ( y l ,  7 1 ) .  Since 0 is independent of cp and takes integer values (see 
Proposition 2.3), it implies that 

is an integer depending only on y and the Lagrangian manifold A .  Therefore it 
is natural to introduce the following 

DEFINITION 2.2. Let y be a curve on A with initial point ( ~ 0 ~ 7 0 )  and end 
point (yl, 71). The number (2.10) is called the Maslov index of y, and its residue 
modulo 4 is called the reduced Maslov index. 

2.4. Principal Symbol and Global Oscillatory Integrals Revisited 

Let us consider now the multi-valued function eiff*l4. Every real phase function 
(P, determines the branch eirram/2 of this multi-valued function on U ,  (here o, is 
defined by (2.9)). On the intersection U ,  n Up we have ei?ran/2 = ei?runo/2eipuo/2. 
This allows us to interpret eiff*I4 as a global section of the Keller-Maslov bundle, 
the local trivialization of which on U ,  is eirU*j2 (here the procedure of local 
trivialization is simply the choice of a branch of the multi-valued function eiff*I4). 
Obviously, this section is nowhere equal to zero, and it trivializes the Keller- 
Maslov bundle. 

By (2.8) iargdet, (@,Ji) = 6*/4 - 7r0/2 + 7r9/4. Therefore Theorem 1.14 
immediately implies 

PROPOSITION 2.8. The section e-iff*/4qm of the Keller-Maslov bundle is 
uniquely determined by the Lagrangian distribution (1.2 1). 

The section e-iff*'4qm is usually called the principal symbol of the Lagrangian 
distribution u. It determines u modulo a Lagrangian distribution of order m - 1. 

Assume now that the reduced Maslov cohomology class is trivial. In this 
case the variation of the multi-valued function 66 along any closed curve is a 
number divisible by 87r. Then every branch of e-iff*/4 is a smooth globally defined 
function on T*M\O. Thus, in this case the sections of the Keller-Maslov bundle 
are canonically identified with complex functions on T*M\O (or on A). 

Let us define in a small neighborhood of the set { x  = x * }  the multi-valued 
function 

(2.1 1) 6&; Y ,  7) = x g  det2dx,cp(x; Y ,  7) . 
Fixing a smooth global branch of t9a we obtain a smooth global branch of 6,. 
It allows us to define in this neighborhood the single-valued function ei99cr;Y,'7)/4. 
We arbitrarily extend it to all (x;  y ,  7) as a smooth function preserving the same 
notation, and put 

(2.12) d 1p (x;  y ,  7) = eiff9(x;Y79)/4 Id,(x;y, v)( , 
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where Id, I is defined by (1.17). It is clear that for x close to x* the function d ,  
is a global smooth branch of (det2d,,'p)'/4. 

Now we obtain from (1.21) and Proposition 2.8 the following result. 

PROPOSITION 2.9. Let us assume that the reduced Maslov cohomology class 
of A is trivial. Then any Lagrangian distribution u(x, y )  of order m associated with 
A can be written as an oscillatory integral 

(2.13) u(x, y )  = (2Tl-n 1 eidW-7) 4(y, 77) d&; y ,  7) dq 

with an arbitrary phase function from 9. The leading homogeneous term 4,,, of 
the amplitude 4 in (2.13) is independent of the choice of cp and is identijied with 
the principal symbol of u . 

2.5. Existence of a Real Phase Function 
Let be an open conic subset of A. The restriction of the Maslov cohomology 

class to A0 is trivial (i.e., ind y = 0 for any closed curve y lying in Ao) if and 
only if for some phase function 'p E 9 there exists a smooth branch of 190 on 
A0 (then, in view of Lemma 1.7, the latter is true for any cp E 9). Consequently, 
if there exists a real phase function parametrizing A0 then the restriction of the 
Maslov cohomology class to A0 is trivial (in this case we can take 1 9 ~  = 0). Thus, 
the non-triviality of the Maslov class is an obstacle to existence of a real phase 
function parametrizing Ao. Ths obstacle, however, is not unique. 

THEOREM 2.10. Let y C A be a closed simple (i.e., without self-intersec- 
tions) curve. Then A can be parametrized by a real phase function satisfying the 
conditions (l.lH1.3) in a small neighborhood of y if and only if the following 
two conditions are firljilled: 

(1) ind y = 0 ;  
(2) there exists an integer p such that 

(2.14) 0 s @(y,q) + p 5 %Yy,d  , v (y, 9) E y . 

The proof of this theorem is based on the following two auxiliary lemmas. 

LEMMA 2.1 1. Let (y0,qo) E T*M\O be an arbitraly point and k be an arbi- 
trary integer such that 

k E [ -%(YO, 7 7 0 ) -   YO, 70)  1 
and k + %(yo, qo) is even. Then there exists a neighborhood of the point 

~ ~ ~ * ~ Y o 1 7 7 0 x ~ * ~ Y o ~ ~ o ~ ~  9 ( Y O ,  -770)) E A 
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which is parametrized by a real phase function cp satisfying (1.1 H 1.3) and such 
that sgn @qq(yo, 770) = k.  

Proof Let us fix local coordinates in the neighborhoods of the points yo and 
xo = x*(yo,qo) such that (2.5) is fulfilled, and denote by C the symmetric matrix 
((x; )T <,* )(yo, 170). Choose a real phase function cp satisfying the conditions (1. l), 
(1.2) and such that at the point (yo,  qo) 

where f is a real function. Then by (1.10) at (yo, 70) 

a,,,, = -c + C 2 f ( C ) .  

It is clear that we can find a function f which provides at (y0,qo) the equalities 
rank a,,,, = 9 and sgn a,,,, = k. By Lemma 2.1 and (2.7) the equality rank = 92 
is equivalent to the non-degeneracy of the matrix ax,,, and therefore the condition 
(1.3) is also fulfilled in a neighborhood of (yo, 710).  The proof is complete. 

LEMMA 2.12. Let cpo and cp1 be real phasefunctions de$ned in a neighborhood 
of a fixed point (xo; yo, m), xo = x*  (yo, qo), and satisfying (1.1 H1.3). I f  

then there exists a smooth family of real phase functions cps, 0 5 s 5 1, satisfying 
(1.1 H 1.3) in a small neighborhood of (xo; yo, 701, such that cps = cpo for s = 0 and 
cps = 91 for s = 1. 

Proof Choose local coordinates in the same way as in the proof of the pre- 
vious lemma and denote 

It is sufficient to construct a smooth transformation B,(y,q) of these matrix- 
functions satisfying the condition 

and then to take a family of phase functions cp, such that 

cps = (x - x * )  . s *  + B,(x - x * )  * (x - x * )  + O((X - x *  13 171) . 

Since the matrices 
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and 
aqq'P1 (xo; Yo, 70) = (x; IT (<; - Bl ' x; ) I (yo,9o) 

have the same signatures and kernels they can be smoothly transformed one into 
another in the class of real symmetric matrices of the same form and with the 
same kernel. This generates the desired transformation B, at (~0,770); see also 
Lemma 1.2, Chapter 8, in [ 141. Now we can take, for example, 

By continuity of BO and B I  the matrix 

is non-degenerate when (y, r ) )  is close to (yo, 170). This completes the proof. 

Proof of Theorem 2.10: Firstly, it will be convenient for us to rewrite condi- 
tion (2) from the statement of the theorem in the following equivalent form: there 
exists an even integer 1 such that 

Note that in view of Lemma 2.4 the expression 20(y, 17) - %(y, 77) appearing in 
the left-hand side of (2.14') equals sgncP,, modulo an integer additive constant. 

Suppose there exists a real phase function cp satisfying the conditions of the 
theorem. We already know that this implies (l), and in this case we can consider 
0 to be single-valued on y. Let us prove (2). Suppose that (2) is false. Then for 
any even integer 1 the inequality (2.14') fails at some point. Consequently, there 
exist two points (y l , q l ) , (y2 ,~ )  E y such that 

But the difference of signatures of two matrices cannot exceed the sum of their 
ranks. This contradiction proves the necessarity of condition (2). 

Suppose that the conditions (1) and (2) hold. Let us prove the existence of 
a real phase function cp satisfying the conditions of the theorem. Let us choose 
a finite set of distinct points (y,, 7,) E 7, a = 0,1,. . . , N, and a set of their 
neighborhoods U ,  such that y C UU, and that for each point ( ya ,qa )  and any k 
the construction of Lemma 2.1 1 produces a real phase function pa parametrizing 
U ,  and with 

sgn drncpa I x=x*(y,,,.) = k .  

Without loss of generality we assume that the covering {U,}  of y is of multiplicity 
two. 
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As condition (1) is fulfilled, we can consider 0 to be single-valued on y. Let 
us fix an even integer 1 for which (2.14') holds, and let us parametrize each U ,  by 
a real phase function 'pa satisfying (1.1)4 I .3) and such that 

By Lemma 2.4 on each U ,  

and therefore on each intersection U ,  fl U p  

Let U ,  f l  Up # 0. Denote by p:' the family of phase functions from Lemma 
2.12 defined for ( y ,  17) E U ,  n Ub and with 9:' = cp,, 'pyp = 'pp;  here we reduce, 
if necessary, the neighborhoods U,, a = 0, I , .  . . ,N, in order to be able to apply 
Lemma 2.12. 

Let { p a }  be a partition of unity associated with the covering {U,}. We intro- 
duce 

ab 

Now we define the phase function 'p such that 'p = 'pop if ( y ,  17) E U ,  r l  Up, and 
'p = 'pa if ( y , q )  E U ,  and ( y , ~ )  @ Up for all p # a. It is a smooth real phase 
function parametrizing A in a neighborhood of y and satisfying the conditions 
(1.1)-( 1.3). The theorem is proved. 

S'PB(Y.9) ' 
Pap(x; yv 7) = 9 s  (x; y ,  7) I 

Exactly the same arguments lead us to 

THEOREM 2.13. Let y C A be a simple non-closed curve. Then A can be 
parametrized by a real phase function satisfying the conditions (1. I)-( 1.3) in a 
small neighborhood of y if and only if there exists an integer p such that (2.14) 
is fulfilled. 

Indeed, if the curve y is not closed then we do not need the equality of sig- 
natures in the first and last neighborhoods from the covering {U,}, and therefore 
we can omit the first condition. 

3. Lagrangian Distributions Associated with Hamiltonian Flows 

3.1. Global Time-Dependent Phase Functions 

Let h(x ,J)  E C"(T*M\O) be a positive function homogeneous in J of degree 
1. Denote by (x'(y ,  q), J'(y ,  7)) the Hamiltonian trajectory in T*M\O generated 
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by the Hamiltonian h with initial data ( y , q ) .  In this and in the next section we 
deal with Lagrangian manifolds 

A' = { (x ,  c), (y, -q) : x = x'(y, v ) ,  E = [ ' (Y ,  7 j )  1 C (T *M\O) X (T*M\O) 

with fixed t E O B I  and 

By analogy with Section 1 we say that a complex function 

cp(t;x;y,q) E C"(R' x M x T*M\O) 

is a phasefinction if it is homogeneous in 7 of degree 1 and Im cp 2 0. As before 
we shall assume that Im cp(f;x; y, q)  > 0 for x lying outside a small neighborhood 
of the point x'(y,  q). By $h we denote the class of phase functions satisfying the 
conditions 

(3.3) detd,,cp(t;x'(y,rl);y,q) # 0 .  

Then for fixed r all the results of Sections 1 and 2 remain valid with x' and [' 
instead of x *  and <* . We preserve the notation from these sections, and consider- 
ing t as a parameter we shall refer to the results obtained there. In particular, by 
Lemmas 1.4 and 1.2 phase functions satisfying (3.1H3.3) exist and they globally 
parametrize the Lagrangian manifolds A'. 

LEMMA 3.1. Any phase function cp E Fh gives a global parametrization of 
the expanded Lagrangian manifold Ah. 

Proof In view of Lemma 1.2 it is sufficient to prove that 

cph;x';y,rl) = - h ( y , v ) .  

Let us differentiate the identity (3.1) with respect to t. We obtain 

c p t ( t ; x ' ; y , d  + i' * cpx(t;x';y,7) = 0 . 

Since 1' = h&',<'), by (3 .2 )  and the Euler identity this implies 
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The lemma is proved. 

3.2. Existence of a Global Smooth Branch of arg(det’&,qP) 

Let us consider the complex “function” det2 dxOp(t;x; y ,  7) (it is a density in x 
and (-1)-density in y).  When t = 0 and x = X‘ this “function” is real and positive, 
i.e., its argument is equal to zero. 

LEMMA 3.2. For x close to X’ there exists a smooth branch of arg (det2a,,,p) 
which is equal to zero when t = 0. 

Proof Let us take a closed curve y lying in a small neighborhood of the set 

Since x is close to x‘ the curve y can be transformed into a closed curve on 
C,. After that we can continuously transform it along the trajectories x‘ into a 
closed curve lying in the set C ,  f l  { t  = 0}, where arg(det2d,,cp) is equal to zero. 
Therefore the integral of the 1-form 

1 
27r 

6, = - d (arg (det*d,,cp)) 

over y is also equal to zero. This proves the lemma. 

3.3. Fixation of the Global Smooth Branch of arg(det2a,,qP) 

From now on we shall deal only with the branch 19, of arg (det2d,,cp) introduced 
in Lemma 3.2. Respectively, we shall always choose the branches of the functions 
6+,d, and 0 generated by this branch of 19,. 

3.4. lkiviality of the Maslov Class 

Since there exists a smooth global branch of I9+ (see Section 3.2), we obtain 

COROLLARY 3.3. The Maslov class of the Lagrangian manifold Ah is trivial. 

Let d,(t;x; y ,  7) E C”(R’ x M x (T*M\O)) be a complex-valued “function” 
homogeneous in 71 of degree 0 defined by the formula 

for x close to x‘ (cf. (2.1 l), (2.12)). As in Sections 1 and 2 (see (1.17)), we suppose 
that d ,  is a (;)-density in x and a (-;)-density in y. 
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By analogy with Proposition 2.9 we obtain the following result. 

THEOREM 3.4. Let u(t, x, y )  be a Lagrangian distribution of order m associated 
with the Lagrangian manifold Ah. Then for  any phasefunction cp E F h  there exists 
an amplitude q(t; y ,  7 )  of order m such that 

u(t, x, y )  = (27~)-” ei’+’(rJ;Y,q) q(t; y,  7 )  d,(t;x; y,  7 )  d7 J (3.4) 

modulo a smooth half-density. The amplitude q is determined modulo S-”” by the 
Lagrangian distribution u and the phase function cp, and its leading term qm does 
not depend on cp. 

3.5. The Maslov Index in the Time-Dependent Case 

Now by our agreement (see Section 3.3) we have a single-valued function 
@(t; y,  77) (see Section 2.2). This immediately implies the following 

PROPOSlTlON 3.5. 
point 01; Y I ,  71 ). Then 

Let y be a curve on Ah with initial point (to; yo, 70) and end 

1 d@ = @ ( t i ; y t , ~ )  - @(to;yo,qd . 

Proposition 3.5 allows us to simplify Definition 2.2 for Lagrangian manifolds 
associated with Hamiltonian flows. 

DEFINITION 3.1. Let y be a curve on Ah with initial point (to; yo, vo) and end 
point (tl ; y l ,  71 ). The number @(to; yo, 70)  - O(r I ; y ~ ,  71 ) is called the Maslov index 
of y , and its residue modulo 4 is called the reduced Maslov index. 

We shall see later (Theorems 3.8, 3.10, Corollaries 3.1 1, 3.12) that the integer 
-O(t; y ,  7) is an important invariant of the Lagrangian manifold Ah. which appears 
when one studies singularities of the Lagrangian distribution. This integer itself 
may now be interpreted as the Maslov index of the (non-closed) curve yo with 
initial point (0; y,  7 )  and end point ( t ;  y, 7). Indeed, since O(0; y,  7 )  = 0, we have 

-@(t;y ,q)  = - / d@ = ind y o .  (3.5) 

The next two propositions allow us to compute 0 explicitly in some cases. 

YO 
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PROPOSITION 3.7. Let r+ (&Ch(x, <)) = n - 1 for all (x, E )  E T*M\O. Then 
for all t 

By Proposition 2.3 the function 0 can have jumps along a Hamiltonian trajec- 
tory only at points where rankxk < n - 1. Under the conditions of Propositions 
3.6 or 3.7 these jumps are determined by the matrix d&(x',['). In other cases, 
generally speaking, the jumps of 0 depend on higher order derivatives of h. 

Proof of Propositions 3.6 and 3.7: Let us fix (to;y,r]) and choose local co- 
ordinates x and y such that det<:(y,r]) # 0. According to Lemma 2.4 with 
cp = (x - x') . <' the jumps of the function 0 coincide with the jumps of 

r- ( ( < : I T  .x:) = r+(d,,cp) I 
By the Taylor formula for any t close to to we have 

. 

Thus 
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For all t the kernel of the matrix 

( ( :IT . dtchh', t t )  * <: 
is the one-dimensional subspace {cq : c E IF!'), and this kernel is a subspace of 
the kernels of the matrices xh and O(lt - t o I 2 )  in (3.6). Now (3.6) implies that if 
rank$ = n - 1 then also rankx: = n - 1 for t close to to, and 0 has no jump 
at to .  When rankxh = 0 it follows from (3.6) that 

((:)T . X; = ( t  - to) (<:)T * dcth(xfo, ('O) * &O + O( It - 
which implies Proposition 3.6. 

{cq : c E R l }  such that 
Let now r+(a.gh) = n - 1. Then there exists a real matrix C with kernel 

CT . ((:")' . dCCh(xro, 6") . <: . C = I - ll, , 

where ll, is the orthogonal projection on q in the chosen coordinates. It allows 
us to rewrite (3.6) as follows 

CT . ((:IT . x; ' c = CT ((<:IT . x: - ( f  - to) (x:)T . dxxh(x'0, ( ' 0 )  . x:") . c 
+ ( t  - to)(Z - n,) + O(lt - toI2) * 

The eigenvalues of the symmetric matrix 

CT . ( (<:")T . x:" - ( t  - ro )  (x:")~ . dX,h(xfo, tro) . x:") . C 

are either identically zero or uniformly separated from zero for t close to t o .  
Therefore the jump of 

I -  (cT . (<:IT . x; . C )  = r- ((<:IT . x:) 

at the point (to; y, q) equals the jump of the number of negative eigenvalues of the 
matrix-function ( t  - t o )  ( I  - n,) restricted to ker (x: . C). This proves Proposition 
3.7. 

3.6. Asyrnptotics of Fourier 'Ikansforms 

To clarify the role of the function 0 we prove two theorems on the asymptotic 
behavior of Fourier transforms. 

THEOREM 3.8. Let u be a Lagrangian distribution (3.4) of order m, and qm 
be the leading homogeneous term of the amplitude q. Let ( t ;  y, 6) be a jixed point 
from 88' X (T*M\O), and let in local coordinates x in a neighborhood of x'(y, 6) 

(3.7) det<i # 0 .  
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Then for  any smooth function p ( x )  with suflciently small support which is equal 
to 1 at the point x'(y, 0) we have 

(3.8) / e-ihx.E'(y,s)p(x)u(t, x ,  y )  dx 

q m  ) I  9=B 
- - Am ( e - i ~ . t '  e-ir r -  ((xk)~.<k) /2 I det I - 1/2 ei7re/2 

+ O(Am-'), A + + 0 0 .  

where 

The proof is complete. 

Let us now fix points xo and yo. Let p E CF(R') be a function with small 
support. We consider the asymptotics of the Fourier transform 

(3.9) 

where u is the Lagrangian distribution given by (3.4) and I A I  - 00. We assume 
that the amplitude q in (3.4) has small (conic) support, and that the following 
conditions are fulfilled. 

CONDITION A. In supp p there is a unique t = to such that x'O(y0,q) = xo for 
Some 71 E supp 400; YO, . ). 

CONDITION B. The set 

wo = { q E T;,M\O : x'O(y0, q) = xo } 

is a smooth connected (n - 9o)-dimensional manifold in T;,,M\O, where 
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is constant on WO.  

Condition B implies that the function @(to; yo, q) is constant on Wo. We denote 
by 90 and 00 the values of %’(to; yo, q) and @(to; yo, q) for q E WO. 

PROPOSITION 3.9. The tangent space TqWo at the point 77 coincides with 
k e r x h o ,  7). 

Proof Obviously, 

for any vector c‘ = (cj, . . . , cn)  from the tangent space T,(Wo). Since dim WO = 
dim ker$(yo, 7 )  this implies the proposition. The proof is complete. 

The Fourier transform (3.9) behaves as a half-density with respect to (x0,yo). 
Therefore it is sufficient to study its asymptotic behavior only for some fixed 
coordinates x and y in the neighborhoods of the points no and yo (the asymptotic 
formula for other coordinate systems f and j is obtained by multiplication by 
1 det(dx/dZ) det(dy/dj)l ‘I2). We choose an arbitrary coordinate system y and 
coordinates x satisfying (3.7). 

Let 

e = ( e , e f f )  , 8’ = (el,. . . , e r )  , 19” = (el+l,. . . ,en) , 1 = go , 

be (non-linear) coordinates in a neighborhood of suppq,(fo;yo, - )  such that 

and 19’‘ are coordinates on WO. We introduce on WO the positive density 

which is obviously homogeneous with respect to 0’’ of degree n - 9 0 / 2 .  By 
Condition B 

Let 

and d h  be the smooth density on WO defined in coordinates 8 by the equality 
dm = hn-%o/2-1dhdA CLO. 
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THEOREM 3.10. Under Conditions A and B in coordinates satisfying (3.7) the 
following asymptotic formulas hold 

(3.10) Je~Afp(t)u(t,xo,yo)dr = ~ ( l ~ l - " ) ,  A - --oo , 

Proof Let us substitute in (3.9) the oscillatory integral (3.4) with the standard 
phase function 

(3.12) 

and change variables 7 - IAl8. Then we obtain 

$0 = (x  - x ' )  * <' 

(3.13) (2T)-n 1x1" Jei  I ~ I  (tsignh+V(t;ro;yo,ll(o))) p(t)  

x q(t;Yo, Ikld8)) d,( t ;xo;Yo,de))  I de t (ddWl . 

Since the gradient vo(to;xo;yo, 11) does not vanish outside the set WO, we can 
assume without loss of generality that supp q(t0; yo, . ) lies in a small neighborhood 
of wo. 

We apply the stationary phase method with respect to the variables 0'. The 
stationary points are determined by the equation 

(3.14) a e . ~ ( c x o ; ~ o , d 8 ) )  = (xo - x X '  ( y O l d e ) ) )  . a o t q ( ~ o , ~ ( e ) )  = 0, 

which has the solution 8' = 0 for t = to. By Condition B the matrix 

is non-degenerate on WO, and thus for t close to to there exists the unique solution 
of (3.14) 8; = 8;( t ,  0 9 ,  such that @:(to,  8") = 0 and (8: ( t ,  W ) ,  8") is close to Wo. 
Using the stationary phase formula we see that (3.13) is equal to 
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modulo lower-order terms. We define the following time-dependent density 

Let us now introduce polar coordinates (r ,  8") such that 

h(yo,r](O,8")) = 1 ; 8'' = r i j " ,  

here 8" is a point on the "sphere" h (yo, 9(O, 8")) = 1. We define the density dji on 
this "sphere" by the equality d p  = r"-90/2-'dr d,h . Obviously, d,h 1 = djio. 
Now (3.16) can be written as 

We apply to (3.17) the stationary phase method with respect to the variables r 
and t .  The stationary points are determined by the equations 

(3.18) c p ( t ; x o ; y o , 1 7 ( ~ * ( t , ~ ' ) , ~ ' ) )  = 0 ,  
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and 

to is the unique solution of the equation (3.18) with respect to t .  In view of (3.20) 
for A < 0 the equation (3.19) has no solution. It means that for negative X there 
is no stationary point. This implies (3.10). 

For A > 0 there is the unique stationary point 

t = to, r = 1 

The Hessian at this point is 

and on account of (1.22) 

(det, Wr,?/ i ) )  = 1 . 

Now from (3.17) by the stationary phase formula we obtain (3.1 1). The proof is 
complete. 

COROLLARY 3.11. Let Condition A be fulfilled and xf0(yo,q) = xo for all 
q E T;,M\O. Then for any coordinates x and y 

where d7j is dejned by the equality dq = h”-’ dh d7j. 

Proof 
corollary. 

We can take in (3.11) 0 = 0” = q which immediately implies the 

COROLLARY 3.12. Let the conditions of Theorem 3.10 befulfilled with 90 = 
n - 1. Then there exists the unique point qo E T;,,M\O such that 
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and 

f0 T - 1  as - +m. Here co = I w - '  ((61 1 ) 70, x? = x?(yo,qo), <? = <%yo,vo), and 
f i o  is the orthogonal projection on the one-dimensional linear subspace generated 
by the vector Q. 

Proof The set Wo is a one-dimensional conic submanifold, i.e., it is a one- 
dimensional ray generated by the vector 70. Without loss of generality we choose 
orthonormal coordinates 77 = (q,  $) such that 71 goes along the vector 70. Then 
we can take 8' = q', 8" = 71, and d& is the &measure at the point 170 with 
coefficient 

10 1/2 . (3.22) Met+ (i(x?)T I d e t h  I Iqol 

Since the kernel of x: at the point (~0,170) is parallel to WO, taking into account 
( 1.1 1) we obtain at this point 

Here nrlo is the orthogonal projection on the one-dimensional linear subspace 
generated by the vector 70. Obviously, for any vector c' we have 

Therefore (3.22) is equal to 

and (3.11) implies (3.21). The proof is complete. 

4. Applications to Hyperbolic Equations 

4.1. Fundamental Solution of a Hyperbolic Operator 

Let A = A(x, 0,) be a first-order elliptic pseudodifferential operator in the space 
of half-densities on M (as usual, 0, = -2,). Assume that the principal symbol 
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a1 of A is real and positive. We consider the solution u(t ,x ,y )  of the following 
initial value problem 

which is often called the fundamental solution. It is well known that u is a 
Lagrangian distribution of order zero associated with the Lagrangian manifold 
Ah introduced in Section 3, where h = a1 (see, for example, [14]). Therefore 
Theorem 3.4 allows us to represent the fundamental solution u modulo C" by 
only one oscillatory integral (3.4) with an arbitrary phase function from the class 
s h  and an amplitude q of order zero. Now we give an independent proof of this 
result, and as a by-product we deduce the transport equations for the homogeneous 
terms q-, of the amplitude q. For simplicity we assume that in any coordinate 
system all the homogeneous terms of the full symbol of A and its derivatives can 
be analytically extended with respect to onto Cn\O. This condition is fulfilled, 
for example, when A is a root of an elliptic differential operator. (In general one 
ought to use the almost analytic extentions of these homogeneous terms, see [14]). 

Let us substitute the oscillatory integral (3.4) into (4.1). Then we obtain an 
oscillatory integral with the same phase function and amplitude 

By the theorem on the action of a pseudodifferential operator on an exponential 
function (see, for example, [14]) we have 

where F is an amplitude of order zero. Thus we can rewrite (4.3) in the form 

By Corollary 1.12 (with d ,  instead of ld,l) the oscillatory integral with ampli- 
tude (4.5) can be transformed into an oscillatory integral of the form (3.4) with 
amplitude 4 independent of x . In view of Lemma 3.1 

for x = xr . Therefore by Lemma 1.10 the amplitude 4 is of order zero. Iterating 
the formula (1.19) we see that the homogeneous terms have the form 
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Here Fo = F o ( t ; y , ~ )  is a homogeneous function of degree zero, and Lj,i = 
L,,i(t; y ,  7, Dq) are differential operators such that 

Thus if the q-,  are the solutions of the recurrent system 

(4.7) 

then after substituting the oscillatory integral (3.4) into the equation (4.1) we obtain 
a smooth half-density. 

Now let us satisfy the initial condition (4.2). In local coordinates 

6(x - y) = (27F)-n &-Yhd7 . J 
By Lemma A.l from the Appendix this implies that 

6(x - y )  = ( 2 ~ ) ~ "  eidoJ;Y.q) w(y, 7) dJO; x ;  y, 7) dq (mod C") J 
with an amplitude w of order zero (of course, this fact also follows from Theorem 
3.4). The homogeneous terms w-, of the amplitude w are computed in accordance 
with (A.4), (AS), and by (A.4) wo = 1.  Thus if 

then the oscillatory integral (3.4) satisfies the initial condition (4.2) modulo C". 
Solving the ordinary differential equations (4.6), (4.7) with initial conditions (4.81, 
(4.9) we find all the homogeneous terms q-,. In virtue of the known a priori 
estimates, the oscillatory integral (3.4) with amplitude q - q-j  differs from the 
fundamental solution u by a smooth half-density. 

Let us now compute the leading term 40. By (4.6) and (4.8) 

Since qo is independent of cp the function FO also does not depend on cp. Let us 
fix a conic open subset of R' x M X (T*M\O) and calculate FO assuming that in 
this subset our global phase function cp is (x  - x ' )  . <', and det <: # 0 (see Section 
1.2). Obviously, 

(4.10) ' p x q  = r: 
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and 

Hence in (4.5) 

We have in our neighborhood 

Therefore integrating by parts we obtain 

J e i ~  ( a x x u l ( x ' , < ' ) ( x - x ~ ) . ( x - x ' ) / 2  + 0(1x-x'13171))  d,d7 

= (2i)-'/e'+'Tr ((<;)-' .dXxul(x',<').x;) d,dq 

up to an oscillatory integral of order 0 with an amplitude containing the factor 
(x - x'). This residual oscillatory integral can be reduced by the same procedure 
to an oscillatory integral of order -1. It follows that 

Fo = (29-lTr ((c&)-' .dxxul(x',<').xC) + d;'D,d,,, + F 

modulo an amplitude of order -1. Locally, since cp is real, 6, = 27r~ for some 
integer K which is determined by the global phase function 'p (see Section 3.3). 
Therefore 

d ,  = exp(i~n/2) I det <; I 'I2 , 

and by Liouville formula 

Since the phase function cp is locally linear with respect to x, we have 

modulo an amplitude of order -1; here a0 is the second symbol of the operator A 
in the chosen coordinates. The oscillatory integral with amplitude O( Ix - x' I) is 
reduced to an oscillatory integral of order -1, and so it is not contained in Fo. 
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Combining the above formulas we obtain 

Fo = ao(x',C') - (2i)-'Tr(a,~al(x',J')) = asub(x',<'), 

where asub is said to be the subprincipal symbol of the pseudodifferential operator 
A; see, for example, [7] and [14]. Thus we have proved the following result. 

THEOREM 4.1. The solution u of the Cauchy problem (4.11, (4.2) is represented 
by an oscillatory integral (3.4) with any phasefunction cp E S h  and with amplitude 
q of order zero the leading homogeneous term of which is 

(4.12) 

Theorem 4.1 allows us to apply the results of the previous section to the fun- 
damental solution u . In particular, Theorems 3.8, 3.10, and Corollaries 3.1 1 ,  3.12 
are valid for u with m = 0 and qo defined by (4.12). 

4.2. The Riemannian Case 

Now let M be a Riemannian manifold with metric g, and let the principal 
symbol al(x, E )  of the operator A be equal to 

(4.13) 

Then x'(y, q) is the geodesic with the initial conditions 

x ' I  = y ,  i' I1=o = a,al(y.q). 

The vector fields x&(y,  q), k = 1,. . . , n, are the Jacobi vector fields with the initial 
conditions 

x$ , (Y ,~ )  1 r=O = 0 ,  & ( y , ~ )  I r=o = d,al(y,q), 

where the dot means the covariant derivative. Therefore by Proposition 3.7 the 
value of the function -0 (introduced in (2.8)) at the point (t; y ,  q) is the Morse 
index of the geodesic xs(y, q), 0 5 s 5 t ,  i.e., the number of conjugate points 
counted with their multiplicities. Now Definition 3.1 and (3.5) imply that in this 
case the Morse and the Maslov indices coincide; this has already been noted in 
PI. 

In this case we can simplify the formulation of Corollary 3.12. 

THEOREM 4.2. Let M be a Riemannian manifold with metric g, and let A 
be a pseudodiflerential operator on M with principal symbol (4.13). Let u be the 



1452 A. LAPTEV, Yu. SAFAROV, AND D. VASSILIEV 

solution of the Cauchy problem (4.11, (4.2), and p be afinction from Cr(R'). Let 
xo, yo E M be f ied ,  and suppose that in (supp p )  x (T;o\O) there is a unique point 
(to,qo) such that ~'~((~0,770) = xo and al(yo,qo) = 1. Let rankx?(yo,r]o) = n - 1. 
Let x and y be local coordinates such that 

(4.14) a l ( X o , O  = 161 = (E: + - . . + ~ 3 ' / ~ ,  

Then the following asymptotic formula holds as X - +co 

Remark 4.3. In Theorem 4.2 we can take x and y to be normal geodesic 
coordinates with origins xo and yo respectively. 

Proof of Theorem 4.2: It is sufficient to prove Theorem 4.2 for some coor- 
dinate system x satisfying the condition (4.14) because both sides of (4.16) are 
invariant under changes of local coordinates x preserving (4.14). So further on we 
can assume, without loss of generality that x are local coordinates satisfying the 
additional condition 

For example, normal geodesic coordinates x with origin xo satisfy (4.17). 
At this stage we cannot yet apply Corollary 3.12 because we do not know 

whether the condition det [?(yo, 710) # 0 is satisfied. So let us choose coordinates 
2 in a neighborhood of xo such that at the point (to; XO; yo, 170) we have 

where c >> 1 is a constant and 63 are the Kronecker symbols (see also the proof 
of Proposition 1.5). Then 

S(Y0,770) = X%YO, 70) 
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By analogy with (1.25) multiplying the latter matrix by 

we obtain the matrix 

In the chosen coordinates x and y at the point (~0 ,770)  we have l[rol = 1 ~ 0 1  = 1 
and, by (4.17), 

From the Euler identities <? . q  = < ' O ,  x? . 7 = 0 and (4.19) it follows that 770 

is the eigenvector of the matrix (4.18) corresponding to the eigenvalue 1. On the 
subspace orthogonal to 770 the matrix ( x : " ) ~ ( ~ o ,  70) . $(yo, 770) is non-degenerate 
and positive. Arguments similar to those in the proof of Lemma 1.17 show that the 
matrix (4.18) is non-degenerate for sufficiently large c,  and consequently $(yo, 770) 
is non-degenerate for sufficiently large c. 

Now comparing the required formula (4.1 6) with (3.21) (written in coordinates 
i) we see that it is sufficient to prove that 

(4.20) t o  = ~ ' " Y 0 , 7 0 )  

and that 

But (4.21) follows from the preservation of the 1-form [ d x  under a homogeneous 
canonical transformation, whereas (4.20) follows from (4.19) and (4.2 1 ). 

Remark 4.4. The right-hand side in (4.16) can be simplified in the following 
obvious way. Denote xo = ( x o I , ~ ~ ) ,  yo = (yol ,yb),  x = (x~,x') ,  y = (y~ ,y ' ) ,  
[ = ([I,['), 77 = (71,77'), where xb, yb, x', y', c', 7' are (n - 1)-component. Suppose 
that our local coordinate systems are oriented in such a way that the hypersurfaces 
x1 = xol and yl = yo1 are orthogonal to the covectors  YO, 70)  and 70 respectively 
(that is, the last n - 1 components of these covectors are zero in the chosen 
coordinate systems). For the sake of brevity let us denote by xq and xk the 
(square) matrices of derivatives of x(q) and ~ ' ( 7 )  with respect to 77 and v', where 
x(7) = ( x ~ ( q ) , x ' ( q ) )  = x'O(y0,q). Then at 77 = 70 we have 
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Appendix 

By the stationary phase method used in the proof of Lemma 1.18 we can find 
all the asymptotic terms in (3.8). For the sake of simplicity we assume below that 
p = 1 in a neighborhood of the point x'(y, 0). 

(A. 1) 1 e-ih.c'(y*e) p(x) u(t, x, y )  dx 

According to Theorem 7.7.5 from [6] we have 

- - Am e - i ~ x ' , < '  e-ir r -  ( ( x i ) ~ . c ~ ) / 2  eir6/2 

x I det <; I -1/2 A-(J+l) (Lj q m - 1 )  I ,,=o + o(Am-N) 9 A - +m 9 

j + l < N  

where x' = x' (y,8) ,  I' = <'(y,8), 0 = O ( t ; y , 8 ) ,  9m-r = qm-r(t;y,q), and the 
L, = Lj(t;  y, q,8, Dq) are differential operators of order 2 j  which are defined as 
follows. Let 

v-p= j 
2 ~ 2 3 1 ~  

where 
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then 9, f is homogeneous of degree p - j ) ;  this fact follows from (A.2) because 
the left-hand side of (A.2) is invariant under changes X - cX, 17 - v/c, for all 
c > 0. 

Formula (A.2) and the homogeneity of the operators 9, imply 

(A.3) / e-ixt'(v,q) p(x) u(t, x ,  y )  dx 

Note that by the stationary phase method the asymptotic formula (A.3) is uni- 
form with respect to ( t ; y ,  9/1171), and we can differentiate it with respect to these 
parameters. 

LEMMA A. 1.  Let cp and + be phase functions satisfying the conditions (3.1 )- 
(3.3). m e n  for any q E Sm there exists an amplitude 4 E Sm such that the 
oscillatory integral (3.4) coincides modulo C" with 

( 2 ~ ) ~ "  1 eiarJ;Y*q) q(t; y ,  17) d&; x; y ,  17) d q  

The homogeneous terms am-, are uniquely determined by the equations 

Proof: Obviously, if we have (A.4) and (AS) then the Fourier transforms of 
the oscillatory integrals with respect to x have the same asymptotics in coordinates 
for which (3.7) is fulfilled. This means that the difference of these oscillatory 
integrals is a smooth half-density with respect to x .  But since we can differentiate 
(A.3), it is also smooth with respect to t and y. 
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