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ABSTRACT. We consider Hardy inequalities on antisymmetric func-
tions. Such inequalities have substantially better constants. We show that
they depend on the lowest degree of an antisymmetric harmonic polyno-
mial. This allows us to obtain some Caffarelli-Kohn-Nirenberg-type in-
equalities that are useful for studying spectral properties of Schrödinger
operators.
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1. INTRODUCTION

The classical Hardy inequality reads for u ∈ H1(RN), N ≥ 3,∫
RN
|∇u|2dx ≥ (N − 2)2

4

∫
RN

|u|2|
|x|2

dx. (1.1)

The literature concerning different versions of Hardys inequalities and their
applications is extensive and we are not able to cover it in this paper. We
just mention the classical paper [3] and books [1], [5], [6], [19].
If N = 2 then Hardy type inequalities and their applications to spec-
tral theory of Schrödinger operators were studied in a series of papers of
M.Solomyak. Here we just mentions two papers [22], [23].

In this note we consider the inequality (1.1) on a class of antisymmetric
functions from H1(RN) that we denote by H1

A(RN). It is assumed that
such functions satisfying the following antisymmetry conditions:

u(. . . , xi, . . . , xj, . . . ) = −u(. . . , xj, . . . , xi, . . . ), (1.2)

where x = (x1, x2, . . . , xN) ∈ RN .

Clearly H1
A(RN) ⊂ H1(RN) and therefore it is expected that the constant

in (1.1) is larger. Our goal is to show that for u ∈ HA(RN) we have∫
RN
|∇u|2dx ≥ CA(N)

∫
RN

|u|2

|x|2
dx, N ≥ 2, (1.3)
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with the explicit constant CA(N) = (N2−2)2
4

, N ≥ 2.
Note that some related sharp inequalities were obtained in [11], [18], where
it was proved that ∫

RN
|∇u|2 dx ≥ N2

4

∫
RN

|u|2

|x|2
dx,

where u(x) = −u(−x) ∈ H1(RN), N ≥ 2. If N = 2 then the constant in
this inequality coincides with CA(N) and equals 1.
The inequalities obtained in Proposition 4 and Corollary 3 for N = 2 are
limiting cases for Caffarelli-Kohn-Nirenberg [4] inequalities that do not
hold without the antisymmetry conditions.
Further applications of Hardy inequalities on antisymmetric functions are
used for proving spectral properties of Schrödinger operators with decay-
ing potentials. In particular, we find some new conditions under which
Schrödinger operators defined on antisymmetric functions do not have neg-
ative eigenvalues. The respective estimates are given in terms of weighted
Egorov-Kondrat’ev type norms of potentials, see [9].
The fact that the spectral point zero is not a resonance state of a magnetic
Schrödinger operator with Aharonov-Bohm magnetic field in the 2D case,
was considered in [2]. For such operators there is a non-trivial Hardy in-
equality [17] and in [2] the authors have obtained some spectral inequal-
ities in terms of norms of potentials functions in L1(R+, L

∞(S), rdr),
see also [16]. In the present paper we use 2D-Hardy inequality for an-
tisymmetric functions that allows us to show absence of negative eigen-
values for Schrödinger operators in terms of the Egorov-Kondrat’ev type
classes Lκ1(RN , |x|κ2dx) of the potential with some κ1, κ2, see Theorem
2. Such classes were also considered in proving Lieb-Thirring inequalities
for Schrödinger operators with subtracted Hardy terms in [7].

Note that in [20] (Proposition 4.1) the author obtained a Hardy inequality
related the inequality obtained in this paper, see Theorem 1, Section 3. The
constant in the inequality obtained in [20] depends on the lowest Dirichlet
eigenvalue of the Laplace-Beltrami operator defined on the intersection of
SN−1 and a cone in RN . In our case such an eigenvalue can be computed
explicitly due to the special structure of antisymmetric functions.

Finally we would like to mention the paper [10], where the authors have
proved the absence of the bound states at the threshold in the triplet S-sector
for Schrödinger operators defined on a class of antisymmetric function.
Some properties of fermionic wave functions were considered in [12].

We begin with some simple statements regarding properties of harmonic
polynomials in Section 2. In Section 3 we prove Hardy inequalities on
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the class of antisymmetric functions. In Section 4 we consider a version
of the Caffarelli-Kohn-Nirenberg inequality, where antisymmetry allows us
to obtain better constants in Corollary 2. Finally we apply our results to
spectral properties of Schrödinger operators in Section 5.

2. SPHERICAL HARMONICS

2.1. Laplace-Beltrami operator on SN−1. The Laplacian in polar coordi-
nates (r, θ), where θ = x/r, r = |x|, x ∈ RN , equals

−∆ = − ∂2

∂r2
− N − 1

r

∂

∂r
− 1

r2
∆θ,

where ∆θ is the Laplace-Beltrami operator on SN−1 = {x ∈ RN : |x| = 1}.
A harmonic homogeneous polynomial of degree M is denoted by PM(x)
and the associated spherical harmonic equals YM = PM

rM
. It is well known

that the spherical harmonics YM are eigenfunctions of the Laplace-Beltrami
operator −∆θ,

−∆θYM = M(M +N − 2)YM = λM,NYM .

The value

h(M,N) =

(
N +M − 1

N − 1

)
−
(
N +M − 3

N − 1

)
is the multiplicity of the eigenvalue λM,N .

2.2. Properties of analytic antisymmetric functions. We have the fol-
lowing result (see [13])

Proposition 1. Let ψ be an analytic antisymmetric function in RN satisfying
the property (1.2). Then there is a symmetric analytic function ϕ such that
ψ = ϕVN , where VN is the Vandermonde determinant

VN =

∣∣∣∣∣∣∣∣∣∣
1 1 1 . . . 1
x1 x2 x3 . . . xN
x21 x22 x23 . . . x2N
. . . . . . . . . . . . . . .
xN−11 xN−12 xN−13 . . . xN−1N

∣∣∣∣∣∣∣∣∣∣
. (2.1)

Proof. Let x = (x1, x2, . . . xN) ∈ RN . Since ψ is antisymmetric we have
ψ(x) = 0 for xk = xj , k 6= j. Hence due to analyticity, ψ has factors
xk − xj for all k 6= j. Factorising them out we therefore conclude that the
function

ϕ(x) =
ψ(x)∏

k<j(xk − xj)
= ψ(x) (VN)−1
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is symmetric and analytic. �

Definition 1. Denote by M(N), N > 1, the smallest integer so that there
is an antisymmetric harmonic homogeneous polynomial PM(N) 6≡ 0 with
degree M(N).

The Vandermonde determinant VN defined in (2.1) is such a harmonic poly-
nomial whose degree equals N(N−1)

2
and thus

M(N) =
N(N − 1)

2
. (2.2)

Corollary 1. The Laplace-Beltrami operator ∆θ defined on antisymmetric
functions on L2(SN−1) satisfies the inequality

−∆θ ≥M(N) =
N(N − 1)

2
in the quadratic form sense.

3. HARDY’S INEQUALITIES

One of our main results is the following:

Theorem 1. Let u ∈ H1
A(RN), N ≥ 2. Then∫

RN
|∇u|2 dx ≥ CA(N)

∫
RN

|u|2

|x|2
dx, (3.1)

where

CA(N) =
(N2 − 2)2

4
. (3.2)

Proof. Consider polar coordinates x = (r, θ), r ∈ (0,∞), and θ ∈ SN−1.
Then∫

RN
|∇u|2 dx =

∫ ∞
0

∫
SN−1

(∣∣∣∣∂u∂r
∣∣∣∣2 +

1

r2
|∇θu|2

)
rN−1 dθdr. (3.3)

Let Y be the orthonormal system of spherical harmonic functions and let
YA ⊂ Y be the orthonormal subset of the setY that are restrictions of totally
antisymmetric homogeneous harmonic polynomials. For any u ∈ H1

A(RN)
we have

u(r, θ) =
∑

k:Yk∈YA

uk(r)Yk(θ).

Then using that M(N) = min{k : Yk ∈ YA} and that

λM,N = M(N)(M(N) +N − 2) =
N(N − 1)(N2 +N − 4)

4
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we find∫
SN−1

|∇θu(r, θ)|2 dθ =
∞∑

k=M(N)

λk|uk(r)|2

≥ λM,N

∞∑
k=M(N)

|uk(r)|2 = λM,N

∫
SN−1

|u(r, θ)|2 dθ. (3.4)

For the radial part we use the classical Hardy inequality on the half-line∫ ∞
0

∣∣∣∣∂u∂r
∣∣∣∣2 rN−1 dr ≥ (N − 2)2

4

∫ ∞
0

|u|2

r2
rN−1 dr. (3.5)

Substituting the inequalities (3.4) and (3.5) into (3.3) we finally arrive at∫
RN
|∇u|2 dx ≥

∫ ∞
0

∫
SN−1

(∣∣∣∣∂u∂r
∣∣∣∣2 + λM,N

|u(r, θ)|2

r2

)
rN−1 dθdr

≥ CA(N)

∫
RN

|u|2

|x|2
dx,

where CA(N) = λM,N + (N−2)2
4

= (N2−2)2
4

. �

Remark 1. It is easy to check that if N = 2 then the lowest eigenvalue on
the Laplace-Beltrami operator on the circle equals one and therefore for
functions u(x1, x2) = −u(x2, x1) we have∫

R2

|∇u|2 dx ≥
∫
R2

|u|2

|x|2
dx.

Remark 2. Note that the constant CA(N) ∼ N4/4 compared with the clas-
sical Hardy’s constant that grows as N2/4, as N →∞.

Proposition 2. The inequality (3.1) is sharp.

Proof. Indeed, let us consider

u0(x) = ϕ(r)YM(N)(θ).

Then substituting this function into the quadratic form (3.3) we obtain∫
RN
|∇u0|2 dx =

∫ ∞
0

∫
SN−1

(∣∣∣∣∂ϕ∂r
∣∣∣∣2 |YM(N)|2 +

1

r2
|ϕ|2|∇θYM(N)|2

)
rN−1 dθdr.

It is well known that the inequality∫ ∞
0

∣∣∣∣∂ϕ∂r
∣∣∣∣2 rN−1 dr ≥ (N − 2

2

)2 ∫ ∞
0

|ϕ|2

r2
rN−1 dr (3.6)
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is sharp. Besides,∫
SN−1

1

r2
|∇θYM(N)|2 dθ = λM,N

∫
SN−1

1

r2
|YM(N)|2 dθ. (3.7)

Combining (3.6) and (3.7) we complete the proof. �

4. CAFFARELLI-KOHN-NIRENBERG TYPE INEQUALITIES

Let N ≥ 3. Then the classical Sobolev inequality states(∫
RN
|u|

2N
N−2 dx

)N−2
N

≤ SN

∫
RN
|∇u|2 dx, (4.1)

where the sharp constant SN was found in [24], see [14],

SN =
N(N − 2)

4
|SN |2/N

=
N(N − 2)

4
22/Nπ1+1/NΓ

(
N + 1

2

)−2/N
. (4.2)

In this section we discuss some special cases of Caffarelli-Kohn-Nirenberg
inequalities considering N = 2 and N ≥ 3 separately.

Proposition 3. Let p = 2N
N−2ϑ , γ = 2N ϑ−1

N−2ϑ , 0 ≤ ϑ ≤ 1 , N ≥ 3. Then for
any antisymmetric function u ∈ H1(RN) we have(∫

RN
|x|γ|u|pdx

)2/p

≤ CN,ϑ

(∫
RN
|∇u|2dx

)ϑ(∫
RN

|u|2

|x|2
dx

)(1−ϑ)

, (4.3)

where
CN,ϑ ≤ SϑN . (4.4)

Remark 3. Note that if ϑ = 1, then γ = 0 and p = 2∗ = 2N/(N − 2). In
this case (4.3) is just the Sobolev inequality.
If ϑ = 0, then p = 2, γ = −2 and in (4.3) the left hand side coincides with
the right hand side with CN,0 = 1.

In the case N = 2 the inequality (4.3) is not valid for u ∈ H1(R2) and we
prove it for anti-symmetric functions.

Proposition 4. Let N = 2. There exists a positive constant C2,ϑ > 0 such
that for any 0 ≤ ϑ < 1 and u ∈ H1

A(R2) we have(∫
R2

|u|
2

1−ϑ

|x|2
dx

)1−ϑ

≤ C2,ϑ

(∫
R2

|∇u|2dx
)ϑ(∫

R2

|u|2

|x|2
dx

)(1−ϑ)

. (4.5)
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Proof of Proposition 3. Applying Hölder’s and Sobolev’s inequalities we
find(∫

RN
|x|γ|u|p dx

)2/p

=

(∫
RN
|u|pϑ

(
|u|
|x|

)p(1−ϑ)
dx

)2/p

≤
(∫

RN
|u|

2N
N−2 dx

)ϑ(N−2)
N

(∫
RN

|u|2

|x|2
dx

)1−ϑ

≤ SϑN

(∫
RN
|∇u|2 dx

)ϑ (∫
RN

|u|2

|x|2
dx

)1−ϑ

.

Note that
pϑ(N − 2)

2N
+
p(1− ϑ)

2
= p

N − 2ϑ

2N
= 1.

The proof is complete.

Proof of Proposition 4. Let Bρ = {0 ≤ |x| ≤ ρ}, ρ > 0, and let u ∈
H1
A(R2) be antisymmetric. Then

ū =

∫
Bρ

u dx = 0.

Then using the Gagliardo-Nirenberg interpolation inequality [8], [21], see
also [15],[19], with p = 2

1−ϑ we have

∫
Bρ

|u|pdx ≤ C

(∫
Bρ

|∇u|2dx

)ϑp/2(∫
Bρ

|u|2 dx

)(1−ϑ)p/2

≤ C

(∫
R2

|∇u|2dx
)ϑp/2 ∫

Bρ

|u|2 dx, (4.6)

where 0 ≤ ϑ < 1. By scaling, the inequality (4.6) is independent of the
radius ρ of the disc Bρ and thus C = C(ϑ).
We now multiply both sides of (4.6) by ρ−3 and integrate with respect to ρ
over (0,∞). Then using simple identities∫ ∞

0

ρ−3
∫
|x|≤ρ
|u|p dxdρ =

1

2

∫
R2

|u|p

|x|2
dx,∫ ∞

0

ρ−3
∫
|x|≤ρ
|u|2 dxdρ =

1

2

∫
R2

|u|2

|x|2
dx,

we finally arrive at∫
R2

|u|p

|x|2
dx ≤ C

(∫
R2

|∇u|2dx
)ϑp/2 ∫

R2

|u|2

|x|2
dx.
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This proves (4.5) with C2,ϑ = C
2
p = C1−ϑ.

Open questions.
1. The Sobolev inequality is achieved on spherically symmetric functions.
Is it possible to improve the constant SN (4.2) in the Sobolev inequality
considering it on functions from H1

A(RN)?
2. It would be interesting to find a direct proof of (4.5) with a sharp constant.

Combining Proposition 3 and Theorem 1 we obtain

Corollary 2. Let N ≥ 3, p = 2N
N−2ϑ , 0 ≤ ϑ ≤ 1 and γ = 2N ϑ−1

N−2ϑ . Then

CA(N)1−ϑ

CN,ϑ

(∫
RN
|x|γ|u|pdx

)2/p

≤
∫
RN
|∇u|2dx, u ∈ H1

A(RN). (4.7)

where CA(N) is defined in (3.2).

Since CA(2) = 1, applying Proposition 4 we have

Corollary 3. Let p = 2
1−ϑ and 0 ≤ ϑ < 1. Then(∫

R2

|u|
2

1−ϑ

|x|2
dx

)1−ϑ

≤ C2,ϑ

∫
R2

|∇u|2dx, u ∈ H1
A(R2). (4.8)

5. APPLICATIONS TO SPECTRAL PROPERTIES OF SCHRÖDINGER
OPERATORS

Let us consider a Schrödinger operator in L2(RN)

H = −∆− V, V ≥ 0,

and its quadratic form

(Hu, u) =

∫
RN

(|∇u|2 − V |u|2) dx. (5.1)

Theorem 2. Let p and ϑ satisfy the conditions from Corollary 2 if N ≥ 3
and Corollay 3 if N = 2. Assume that

CN,ϑ
CA(N)1−ϑ

(∫
RN
V

N
2ϑ |x|

1−ϑ
2ϑ

N dx

) 2ϑ
N

≤ 1.

Then the operator H is positive,

H = −∆− V ≥ 0. (5.2)

In particular, if N = 2 then (5.2) is true assuming

C2,ϑ

(∫
R2

V
1
ϑ |x|

1−ϑ
ϑ dx

)ϑ
≤ 1.
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Proof. Using Hölder’s inequality we have∫
RN
V |u|2 dx =

∫
RN
V |x|α|u|2|x|−α dx

≤
(∫

RN
V q|x|αq dx

)1/q (∫
RN
|x|−αp|u|p dx

)2/p

,

where 1/q + 2/p = 1 and thus

1

q
= 1− 2

N − 2ϑ

2N
=

2ϑ

N
.

Choosing

α = −γ/p = −2N
ϑ− 1

N − 2ϑ
· N − 2ϑ

2N
= 1− ϑ

we have

αq = (1− ϑ)
N

2ϑ
.

Using Corollary 2 we find∫
RN

(|∇u|2 − V |u|2) dx

≥

(
1− CN,ϑ

CA(N)1−ϑ

(∫
RN
V

N
2ϑ |x|

N(1−ϑ)
2ϑ dx

) 2ϑ
N

)

×
∫
RN
|∇u|2dx ≥ 0.

�
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