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In this paper we obtain some sharp Hardy inequalities with 
weight functions that may admit singularities on the unit 
sphere. In order to prove the main results of the paper we 
use some recent sharp inequalities for the lowest eigenvalue 
of Schrödinger operators on the unit sphere obtained in the 
paper [3].
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1. Introduction

The classical Hardy inequality for the Laplacian in Rd

∫
Rd

|∇u(x)|2 dx ≥ (d− 2)2

4

∫
Rd

|u(x)|2
|x|2 dx, u ∈ C∞

0 (Rd), d ≥ 3, (1.1)

is well known and has many elementary proofs. This inequality is not achieved but 
the constant (d − 2)2/4 is sharp. It is often associated with the Heisenberg uncertainty 
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principle and plays important role in spectral theory of Schrödinger operators. In par-
ticular, this inequality is equivalent to the quadratic form inequality

−Δ − (d− 2)2

4
1

|x|2 ≥ 0,

which states that if d ≥ 3, then one can subtract a positive operator from the Laplacian 
so that the difference remains non-negative. The literature devoted to different types of 
Hardy’s inequalities is vast and it is not our aim to cover it in this short paper, but note 
that the description of other “Hardy weights” is an interesting problem. Here we are 
dealing with the case, where instead of the spherical symmetrical weight 1/|x|2 in the 
integral on the right hand side of (1.1) we consider a more general class of homogeneous 
functions of degree −2 which may have singularities along rays starting at the origin.

Namely, in this paper we prove the inequality
∫
Rd

|∇u(x)|2 dx ≥ τ

∫
Rd

Φ(x/|x|)
|x|2 |u(x)|2 dx, u ∈ C∞

0 (Rd), d ≥ 3, (1.2)

with some τ > 0 for a class of measurable functions Φ defined on Sd−1. The theorems 
proved in this paper are based on the recent inequalities obtained in the paper [3], where 
the authors have found sharp bounds for the first eigenvalue of a Schrödinger operator 
on Sd−1 using deep results from [1].

In order to formulate our results let us introduce the measure dϑ induced by Lebesgue’s 
measure on Sd−1 ⊂ R

d. We denote by ‖ · ‖Lp(Sd−1) the quantity

‖Φ‖Lp(Sd−1) =

⎛
⎝ ∫

Sd−1

|Φ(ϑ)|p dϑ

⎞
⎠

1/p

.

Our first result is:

Theorem 1.1. Let d ≥ 3 and 0 ≤ Φ ∈ Lp(Sd−1), where

p ≥ (d− 2)2

2(d− 1) + 1. (1.3)

Then
∫
Rd

|∇u(x)|2 dx ≥ τ

∫
Rd

Φ(x/|x|)
|x|2 |u(x)|2 dx, u ∈ C∞

0 (Rd), (1.4)

where

τ = (d− 2)2

4 |Sd−1|1/p ‖Φ‖−1
Lp(Sd−1). (1.5)
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Remark 1.2. For the class of functions Φ satisfying the conditions of the theorem, in-
equality (1.4) is sharp. Indeed, if Φ ≡ 1, then (1.4) takes the classical sharp form

∫
Rd

|∇u(x)|2 dx ≥ (d− 2)2

4

∫
Rd

|u(x)|2
|x|2 dx.

Remark 1.3. If for example d = 3, then the lowest possible value of p that is allowed in 
Theorem 1.1 equals 5/4, see (1.3).

Note that the condition on the value of p in (1.3) could be weakened. In our next 
theorem we consider the values of p smaller than (d−2)2

2(d−1) + 1.

Theorem 1.4. Let d ≥ 3 and 0 ≤ Φ ∈ Lp(Sd−1), where

p ∈ (1, 5/4) , if d = 3, and p ∈
[
d− 1

2 ,
(d− 2)2

2(d− 1) + 1
)
, if d ≥ 4.

Then
∫
Rd

|∇u|2 dx ≥ (1 − ν0)
(d− 2)2

4

∫
Rd

|u|2
|x|2 dx + τ

∫
Rd

Φ(x/|x|)
|x|2 |u|2 dx, (1.6)

where

ν0 = 2(d− 1)(p− 1)
(d− 2)2 < 1,

and

τ = ν0
(d− 2)2

4 |Sd−1|1/p ‖Φ‖−1
Lp(Sd−1). (1.7)

Remark 1.5. The inequality (1.6) is sharp and achieved for the functions Φ ≡ const. 
Moreover, if p = (d−2)2

2(d−1) +1, then ν0 = 1 in (1.6) and this inequality coincides with (1.4).

Remark 1.6. In Theorem 4.1 (see Section 4) we consider the values of p

d− 1
2 < p <

(d− 2)2

2(d− 1) + 1 (1.8)

and obtain an inequality similar to (1.6) with different ranges of τ and ν’s. It is interesting 
that in this case the optimal class of functions Φ does not coincide with constants. It is 
more convenient for us to formulate and prove the respective result after the proof of 
Theorems 1.1 and 1.4.
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Finally in the last section we obtain a Hardy inequality for fractional powers of the 
Laplacian. Namely, let us define the quadratic form

∫
Rd

|∇κu(x)|2 dx = (2π)−d

∫
Rd

|ξ|2κ |û(ξ)|2 dξ,

where û is the Fourier transform of u.

Theorem 1.7. Let 0 < κ < d/2 for d = 1, 2, and 0 < κ ≤ 1 for d ≥ 3. Assume that 
Φ = Φ(x/|x|) ≥ 0 is a measurable function defined on Sd−1, such that Φ ∈ Ld/2κ(Sd−1). 
Then

∫
Rd

|∇κ(x)|2 ≥ τ

∫
Rd

Φ(x/|x|)
|x|2 |u(x)|2 dx, (1.9)

where

τ = 22κ Γ2 ((d/2 + κ)/2)
Γ2 ((d/2 − κ)/2)

∣∣Sd−1∣∣2κ/d ‖Φ‖−1
Ld/2κ(Sd−1). (1.10)

In order to prove this theorem we use fractional Hardy inequalities proved in [5] and [9]
(note that 22κ Γ2 ((d/2 + κ)/2) Γ−2 ((d/2 − κ)/2) |κ=1 = (d − 2)2/4).

Remark 1.8. Note, that in the case κ = 1 Theorem 1.1 is stronger than Theorem 1.7
since it allows us to have a larger class of functions Φ because of the strict embedding

Ld/2(Sd−1) ⊂ L
(d−2)2
2(d−1) +1(Sd−1).

Remark 1.9. The constant τ in (1.10) is sharp as it is sharp for Φ = const.

In the recent paper of B. Devyver, M. Fraas and Y. Pinchover [2] the authors con-
sidered a rather general second order operator with variable coefficients and found an 
optimal weight for the respective Hardy inequality. In particular, such a weight for the 
Laplacian coincides with 1/|x|2.

Our result is different as we deal with the “flat” Laplacian and find a class of weight 
functions that may have singularities not only at the origin.

2. Auxiliary statements

In order to prove Theorem 1.1 we use a result obtained in [3] which provides a sharp 
estimate for the first negative eigenvalue λ1 of the Schrödinger operator in L2(Sd−1),

−Δϑ − Φ, Φ ≥ 0,



3282 T. Hoffmann-Ostenhof, A. Laptev / J. Funct. Anal. 268 (2015) 3278–3289
where −Δϑ is the Laplace–Beltrami operator on Sd−1. Note that we need it only for the 
case d ≥ 3.

Theorem 2.1. Let d ≥ 3 and 0 ≤ Φ ∈ Lp(Sd−1), where p ∈
(
(d − 1)/2, +∞

)
. Then there 

exists an increasing function α : R+ → R+

α(μ) = μ for any μ ∈
[
0, d− 1

2 (p− 1)
]
, (2.1)

and convex if μ ∈
(
d−1
2 (p − 1), +∞

)
, such that

|λ1(−Δϑ − Φ)| ≤ α

(
1

|Sd−1|1/p ‖Φ‖Lp(Sd−1)

)
. (2.2)

The estimate (2.2) is optimal in the sense that there exists a non-negative function Φ, 
such that

|λ1(−Δϑ − Φ)| = α

(
1

|Sd−1|1/p ‖Φ‖Lp(Sd−1)

)
,

for any μ ∈
(
d−1
2 (p − 1), +∞

)
. If μ ≤ d−1

2 (p − 1), then equality in (2.2) is achieved for 
constants.

For large values of μ we have

α(μ)p−
d−1
2 = L1

p− d−1
2 ,d−1 μ

p (1 + o(1)), (2.3)

where L1
γ,d−1 are the Lieb–Thirring constants appearing in [7] in the inequality for the 

lowest eigenvalue of a Schrödinger operator in L2(Rd−1).
Moreover, if p = (d − 1)/2, d ≥ 4, then (2.2) is satisfied with α(μ) = μ for μ ∈

[0, (d − 1)(d − 3)/2].

Note that here the function α(μ) is invertible and its inverse μ(α) equals (see [3])

μ(α) = |Sd−1| 2q−1 inf
u∈H1(Sd−1)

‖∇u‖2
L2(Sd−1) + α ‖u‖2

L2(Sd−1)

‖u‖2
Lq(Sd−1)

, (2.4)

where q ∈
(
2, 2(d−1)

d−3

)
(with (2, ∞) for d = 3) and where the values of p and q/2 are 

Hölder conjugates, q = 2p/(p − 1). The optimal value in (2.4) is achieved by the unique 
solution u of the non-linear equation

−Δu + αu− μ(α)uq−1 = 0,

that for each chosen α also defines the value of μ(α).
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Obviously if v ≡ c, c ∈ R, and Φ ≥ 0 is non-trivial, then the quadratic form
∫

Sd−1

(
|∇ϑv|2 − Φ|v|2

)
dϑ = −c2

∫
Sd−1

Φ dϑ < 0.

Therefore due to the variational principle the eigenvalue λ1(−Δϑ − Φ) is negative for 
any nonnegative, non-trivial Φ and consequently the inequality (2.2) is a lower estimate

0 ≥ λ1(−Δϑ − Φ) ≥ −α

(
1

|Sd−1|1/p ‖Φ‖Lp(Sd−1)

)
∀Φ ∈ Lp(Sd−1). (2.5)

If Φ changes sign, the above inequality still holds if Φ is replaced by the positive part 
Φ+ of Φ, provided the lowest eigenvalue is negative. We can then write

|λ1(−Δϑ − Φ)| ≤ α

(
1

|Sd−1|1/p ‖Φ+‖Lp(Sd−1)

)
.

The expressions for the constants L1
p−d−1

2 ,d
in (2.3) are not explicit for d ≥ 3, but can be 

given in terms of an optimal constant in some Gagliardo–Nirenberg–Sobolev inequality 
(see [7] and [3]) in the following way:

Let q = 2p/(p − 1) > 2 and denote by KGN(q, d − 1) the optimal constant in the 
Gagliardo–Nirenberg–Sobolev inequality, given by

KGN(q, d− 1) := inf
u∈H1(Rd−1)\{0}

‖∇u‖2 ρ
L2(Rd−1) ‖u‖

2 (1− ρ)
L2(Rd−1)

‖u‖2
Lq(Rd−1)

,

where ρ = ρ(q, d) = (d − 1) q−2
2 q .

Then

L1
p− d−1

2 ,d−1 =
[
ρ−ρ (1 − ρ)− (1− ρ) KGN(q, d− 1)

]−p

.

Lemma 2.2. Let τ > 0 and d ≥ 3. Then
∫
Rd

|∇u|2dx ≥
∫
Rd

|u|2
|x|2

(
τ Φ(x/|x|) + λ1 (−Δϑ − τ Φ(x/|x|)) + (d− 2)2

4

)
dx. (2.6)

Proof. Let x = (r, ϑ) ∈ R
d be polar coordinates in Rd. Then we find

∫
Rd

|∇u|2 dx =
∞∫
0

∫
Sd−1

(
|∂ru|2 + 1

r2 |∇ϑu|2
)

rd−1 dϑdr. (2.7)

Note that according to the classical Hardy inequality for radial functions f ∈ C∞
0 (0, ∞)

we have
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∞∫
0

|f ′(r)|2 rd−1 dr ≥ (d− 2)2

4

∞∫
0

|f |2
r2 rd−1 dr.

Applying the latter inequality to u(r, ϑ) for a fixed ϑ and then integrating over Sd−1 we 
obtain

∫
Sd−1

∞∫
0

|∂ru|2 rd−1 drdϑ ≥ (d− 2)2

4

∫
Sd−1

∞∫
0

|u|2
r2 rd−1 drdϑ. (2.8)

Let τ > 0. It follows from Theorem 2.1 that

∞∫
0

∫
Sd−1

1
r2 |∇ϑu|2 rd−1 dϑdr =

∞∫
0

∫
Sd−1

1
r2 |∇ϑu|2 rd−1 dϑdr

=
∞∫
0

∫
Sd−1

1
r2 τ Φ |u|2 rd−1 dϑdr

+
∞∫
0

∫
Sd−1

1
r2

(
|∇ϑu|2 − τ Φ |u|2

)
rd−1 dϑdr

≥
∞∫
0

∫
Sd−1

1
r2 (τ Φ + λ1(−Δϑ − τ Φ)) |u|2 rd−1 dϑdr.

(2.9)

Putting together (2.7), (2.8) and (2.9) we obtain the statement of the lemma. �
Corollary 2.3. Let τ > 0 and d ≥ 3 and let 0 ≤ Φ ∈ Lp(Sd−1), where

p ∈
(
max{1, (d− 1)/2},+∞

)
.

Then
∫
Rd

|∇u|2dx ≥
∫
Rd

|u|2
|x|2

(
τ Φ(x/|x|) − α(μ) + (d− 2)2

4

)
dx, (2.10)

where

μ = τ |Sd−1|−1/p ‖Φ‖Lp(Sd−1).

Proof. Indeed, in order to prove (2.10) it is enough to apply the inequality (2.5) esti-
mating the value of λ1 (−Δϑ − τ Φ(x/|x|)) in (2.6). �
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3. Proofs of the main results

Proof of Theorem 1.1. The condition

p ≥ (d− 2)2

2(d− 1) + 1 (3.1)

implies both

p ∈
(
d− 1

2 ,∞
)

and (d− 2)2

4 ≤ d− 1
2 (p− 1).

Due to Theorem 2.1 the convex function α(μ) = μ for

μ ∈
[
0, (d− 1)(p− 1)

2

]
.

Thus if in (2.10) we choose τ according to the equation

α(μ) = μ = |Sd−1|−1/p τ ‖Φ‖Lp(Sd−1) = (d− 2)2

4 ,

namely

τ = (d− 2)2

4 |Sd−1|1/p ‖Φ‖−1
Lp(Sd−1),

then we obtain the statement of Theorem 1.1. �
Proof of Theorem 1.4. When proving Theorem 1.1 we fully compensated the positive 
term on the right hand side of (2.8). This gave us a restriction on the possible values 
of p, see (3.1). Assume now that

p ∈ (1, 5/4) , if d = 3, and p ∈
[
d− 1

2 ,
(d− 2)2

2(d− 1) + 1
)
, if d ≥ 4, (3.2)

and choose ν0 such that

ν0
(d− 2)2

4 = (d− 1)(p− 1)
2 , (3.3)

which gives us the value

ν0 = 2(d− 1)(p− 1)
(d− 2)2 < 1.

Then using (2.10) we find
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∫
Rd

|∇u|2dx ≥
∫
Rd

|u|2
|x|2

(
τ Φ(x/|x|) − α(μ) + (d− 2)2

4

)
dx

=
∫
Rd

(
τ Φ(x/|x|) + (1 − ν0)

(d− 2)2

4

)
|u|2
|x|2 dx

+
∫
Rd

(
ν0

(d− 2)2

4 − α(μ)
)

|u|2
|x|2 dx. (3.4)

Due to the choice of p and ν0 given in (3.2) and (3.3) respectively, we have

α(μ) = μ = |Sd−1|−1/p τ ‖Φ‖Lp(Sd−1).

It remains to choose τ according to

τ |Sd−1|−1/p ‖Φ‖Lp(Sd−1) = ν0
(d− 2)2

4 ,

namely,

τ = ν0
(d− 2)2

4 |Sd−1|1/p ‖Φ‖−1
Lp(Sd−1).

This completes the proof of Theorem 1.4. �
4. Hardy inequalities with ν0 < ν ≤ 1

As it was mentioned in Remark 1.6, for the values

d− 1
2 < p <

(d− 2)2

2(d− 1) + 1,

we can now consider ν : ν0 < ν ≤ 1. Then since

(d− 2)2

4 >
(d− 1)(p− 1)

2

the equation

α
(
τ |Sd−1|−1/p ‖Φ‖Lp(Sd−1)

)
= ν

(d− 2)2

4

is more complicated, because in this case α(μ) is non-linear. However, since it is increasing 
and convex, its inverse μ(α) is well defined and thus we find

τ = |Sd−1|1/p ‖Φ‖−1
Lp(Sd−1) μ

(
ν

(d− 2)2

4

)
.

Hence the inequality (2.10) immediately implies:
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Theorem 4.1. Let d ≥ 3 and 0 ≤ Φ ∈ Lp(Sd−1), where

d− 1
2 < p <

(d− 2)2

2(d− 1) + 1.

Then
∫
Rd

|∇u|2 dx ≥ (1 − ν) (d− 2)2

4

∫
Rd

|u|2
|x|2 dx + τ

∫
Rd

Φ(x/|x|)
|x|2 |u|2 dx, (4.1)

where

ν0 = 2(d− 1)(p− 1)
(d− 2)2 < ν ≤ 1

and

τ = |Sd−1|1/p ‖Φ‖−1
Lp(Sd−1) μ

(
ν

(d− 2)2

4

)
.

Remark 4.2. Note that since μ(α) is an increasing function, the value of τ in (4.1) is 
larger than the respective value of τ in (1.6). In particular, ν = 1 allows us to consider 
a class of weight functions Φ with full compensation of the term (d − 2)2/4. If follows 
from [3] that the optimal functions Φ are not constants.

Remark 4.3. Eq. (2.3) immediately implies

μ(α) =
(
L1
p− d−1

2 ,d−1

)−1/p
α1− d−1

2p (1 + o(1)) as α → ∞

(see also [3, Proposition 10]).

5. Proof of Theorem 1.7

Let A ⊂ R
d and denote by A∗ = {x : |x| < r} with (|Sd−1|/d)|x|d = |A| that is the 

symmetric rearrangement of A. By χA and χA∗ we denote characteristic functions of A
and A∗ respectively. Then for any Borel measurable function f : R

d → C vanishing at 
infinity we denote by f∗ its decreasing rearrangement

f∗(x) =
∞∫
0

χ{|f(x)|>t}∗ dt.

By using the Hardy–Littlewood rearrangement inequality we find
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∫
Rd

Φ(x/|x|)
|x|2κ |u|2 dx ≤

∫
Rd

(
Φ(x/|x|)
|x|2κ

)∗
(u∗)2 dx.

Clearly

∣∣{x : |Φ(x/|x|)| > t |x|2κ}
∣∣ = 1

d
t−d/2κ

∫
Sd−1

Φd/2κ(θ) dθ

and thus
(

Φ(x/|x|)
|x|2κ

)∗
=

∞∫
0

χ{|Φ(x/|x|)|>t |x|2κ}∗ dt

=
∞∫
0

χ{
|Sd−1| |x|d<

∫
Sd−1 Φd/2κ(θ) dθ t−d/2κ

} dt

= 1
|Sd−1|2κ/d

(∫
Sd−1 Φd/2κ(θ) dθ

)2κ/d

|x|2κ .

We now use the Hardy inequality obtained in the papers [5,9] (see also [4] for Lp-versions 
of these inequalities) stating that if κ < d/2, then

∫
Rd

|u|2
|x|2κ dx ≤ Cκ

∫
Rd

|∇κu|2 dx,

where

Cκ = 2−2κ Γ2 ((d/2 − κ)/2)
Γ2 ((d/2 + κ)/2) .

Therefore ∫
Rd

Φ(x/|x|)
|x|2κ |u|2 dx ≤

∫
Rd

(
Φ(x/|x|)
|x|2κ

)∗
(u∗)2 dx

=
‖Φ‖Ld/2κ(Sd−1)

|Sd−1|2κ/d

∫
Rd

(u∗)2

|x|2κ dx

≤ Cκ

‖Φ‖Ld/2κ(Sd−1)

|Sd−1|2κ/d

∫
Rd

|∇κu∗(x)|2 dx.

Finally by using the Pólya and Szegö rearrangement inequality (see for example [8,6]).

‖∇κu∗‖2 ≤ ‖∇κu‖2, 0 ≤ κ ≤ 1,

we complete the proof of Theorem 1.7.
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