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Abstract. The content of the paper is reflected by its title.

§1. Main results

Let H be a separable Hilbert space and let V be a measurable function from R+

to the set of bounded selfadjoint operators on H. The measurability of V means that
the function x 7→ 〈V (x)h, h〉 is measurable for each h ∈ H. We study the absolutely
continuous spectrum of the Schrödinger operator

(1) H = − d2

dx2
+ αV, V ∗ = V,

acting in the space L2(R+,H). Here, α is a real parameter. We impose the condition

(2)

∫
R+

‖V (x)‖2 dx <∞.

The domain of H consists of W 2
0 (R+,H)-functions. This class of functions can be viewed

as the countably infinite orthogonal sum of Sobolev spaces W 2
0 (R+). Besides having

square integrable generalized derivatives of the second order, the W 2
0 (R+)-functions van-

ish at x = 0.

Definition. We say that an essential support of the absolutely continuous spectrum of
the operator H contains [0,∞) if the spectral projection Eα(Ω) of H corresponding to
any Borel set Ω ⊂ [0,∞) is different from zero, Eα(Ω) 6= 0, as soon as the Lebesgue
measure of Ω is positive.

Operators with square integrable potentials were studied by P. Deift and R. Killip [1]
in the case where H = C. The main result of [1] states that the absolutely continuous
spectrum of the operator −d2/dx2 +V covers the positive half-line [0,∞) if V ∈ L2(R+).

We consider the case where the space H is infinite dimensional and give a different
proof of the following theorem by S. Denisov [4].

Theorem 1.1. Let V satisfy condition (2). Then an essential support of the absolutely
continuous spectrum of the operator (1) contains [0,∞) for almost every α ∈ R.
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Besides the article [4], one can also find a close discussion of similar operator families
in the papers [7] and [8]. In all mentioned publications, the properties of the absolutely
continuous spectrum are established for almost every value of the real parameter α.
However, if ‖V (x)‖ ≤ C(1 + |x|)−2/3−δ with δ > 0, then the absolutely continuous
spectrum fills the positive half-line R+ for all α (see [5]). Instead of using hyperbolic
pencils considered in [4], we obtain Theorem 1.1 by an application of Lemma 2.1.

§2. Auxiliary lemma

Notation. Throughout the text, Re z and Im z denote the real and imaginary parts of a
complex number z. For a selfadjoint operator B = B∗ and a vector g of a Hilbert space,
the expression ((B − k − i0)−1g, g) is always understood as the limit(

(B − k − i0)−1g, g
)

= lim
ε→0

(
(B − k − iε)−1g, g

)
, ε > 0, k ∈ R.

The following simple statement plays a very important role in our proof.

Lemma 2.1. Let B be a selfadjoint operator in a separable Hilbert space H and let g ∈ H.
Then the function

η(k) := Im
(

(B − k − i0)−1g, g
)
≥ 0

is integrable over R. Moreover, ∫ ∞
−∞

η(k) dk ≤ π‖g‖2

and ∫ ∞
−∞

η(k)

k2 + 1
dk ≤ π‖(B2 + I)−1/2g‖2.

Proof. Let EB( · ) be the spectral measure of the operator B. Then(
(B − z)−1g, g

)
=

∫
R

(t− z)−1 d
(
EB(−∞, t)g, g

)
, z ∈ C \ R.

Therefore, according to the Stieltjes–Perron inversion formula,

π−1η(k) =
d

dk

(
EB(−∞, k)g, g

)
, for almost every k ∈ R.

Consequently, for any nonnegative measurable function f on R,∫
R
f(k)η(k) dk ≤ π

∫
R
f(k) d

(
EB(−∞, k)g, g

)
= π

(
f(B)g, g

)
. �

§3. Entropy

Let µ be a nonegative finite Borel measure on the real line R. As any other measure
it is decomposed uniquely into a sum of three terms

µ = µpp + µac + µsc,

where the first term is pure point, the second term is absolutely continuous, and the last
term is a continuous but singular measure on R. Obviously, µ(−∞, λ) is a monotone
function of λ, therefore, it is differentiable almost everywhere. In particular, the limit

µ′(λ) = lim
ε→0

µ(λ− ε, λ+ ε)

2ε

exists for almost every λ ∈ R. It is also clear that

µac(Ω) =

∫
Ω

µ′(λ) dλ, Ω ⊂ R,
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which means that µ′ = µ′ac.
Let Ω0 = {λ : µ′(λ) > 0}. A measurable set Ω ⊂ R is called an essential support of

µac if the Lebesgue measure of the symmetric difference

Ω04Ω :=
(

Ω0 \ Ω
)
∪
(

Ω \ Ω0

)
is zero. So, an essential support of µac coincides with the set where µ′ > 0 up to a
set of measure zero. As we see, the study of the essential support of the a.c. part of
the measure µ is reduced to the study of the set Ω0 = {λ : µ′(λ) > 0}. Let Ω be a
measurable set. One of the ways to show that µ′(λ) > 0 for almost every λ ∈ Ω relies on
the study of the quantity

SΩ(µ) :=

∫
Ω

logµ′(λ) dλ.

Due to Jenssen’s inequality, SΩ < ∞ for sets of finite Lebesgue measure |Ω| <∞. So,
the entropy in this case can diverge only to the negative infinity.

But if

SΩ(µ) > −∞, while |Ω| <∞,
then

µ′(λ) > 0 a.e. on Ω.

Very often one can obtain an estimate for µ′ by an analytic function from below. In
this case, we will use the following statement.

Proposition 3.1. Let a function F (λ) 6= 0 be analytic in a neighborhood of an interval
[a, b] ⊂ R. Suppose that

(3) µ′(λ) > |F (λ)|2, for all λ ∈ Ω ⊂ [a, b].

Then

SΩ(µ) :=

∫
Ω

logµ′(λ) dλ ≥ C > −∞,

where the constant C = C([a, b], F ) depends on the interval [a, b] and the function F .

Proof. This proposition follows from the fact that the zeros of analytic functions are
isolated and have finite multiplicities. �

In applications to Schrödinger operators, one often has an estimate of the form (3) for
a sequence of measures µn that converges to µ weakly

µn → µ weakly.

In this situation, one can still derive a certain information about the limit measure µ
from the information about µn.

Definition. Let ρ, ν be finite Borel measures on a compact Hausdorff space X. We
define the entropy of ρ relative to ν by

(4) S(ρ|ν) =

{
−∞ if ρ is not ν-ac

−
∫
X

log( dρdν )dρ if ρ is ν-ac.

Theorem 3.1 (cf. [6]). The entropy S(ρ|ν) is jointly upper semi-continuous in ρ and ν
with respect to the weak topology. That is, if ρn → ρ and νn → ν as n→∞ weakly, then

S(ρ|ν) ≥ lim sup
n→∞

S(ρn|νn).

Now, we use this theorem in order to prove the following statement.
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Proposition 3.2. Let a < b. Let F (λ) 6= 0 be a function analytic in a neighborhood
of [a, b]. Let µn be a sequence of finite nonnegative Borel measures on the real line R
converging to µ weakly. Suppose that

µ′n(λ) > |F (λ)|2, for all λ ∈ Ωn ⊂ [a, b],

where the measurable sets Ωn satisfy∣∣∣[a, b] \ Ωn

∣∣∣ < b− a− ε.

Then µ′(λ) > 0 on a subset of [a, b] whose measure is not smaller than b− a− ε

Proof. We denote the characteristic function of the set Ωn by χn. Since the L2-norms
of χn are uniformly bounded, this sequence of functions has a weakly convergent subse-
quence. Therefore without loss of generality, we may assume that

χn → χ weakly in L2(R).

This, of course, implies that the corresponding measures χndλ also converge weakly to
χdλ. Even though R is not compact, we can still use Theorem 3.1 and show (see [7]) that∫

R
log
(µ′(λ)

χ(λ)

)
χ(λ) dλ ≥ lim sup

n→∞

∫
R

log
(µ′n(λ)

χn(λ)

)
χn(λ) dλ > −∞.

Thus, we see that µ′ > 0 on the support of the function χ. However, we still need to
know how big this set is. For that purpose, we first observe that∫ b

a

χ(λ) dλ = lim
n→∞

∫
R
χn(λ) dλ ≥ b− a− ε.

On the other hand, it is easy to show that 0 ≤ χ ≤ 1. Therefore, the Lebesgue measure
of the support of the function χ is not smaller than b− a− ε. �

Since we deal with a family of operators depending on a parameter α, we also need
a modification of the previous statement, suitable in the case when the measures also
depend on the parameter α. Let M be the topological space whose elements are non-
negative Borel measures µ on R having the property µ(R) = 1. We define the topology
on M to be the one that is induced by the weak-∗ topology. Finally, let M(R) be the
class of continuous functions from R to M. We are ready to state the following result.

Proposition 3.3. Let a < b. Let F (λ) 6= 0 be a function analytic in a neighborhood
of [a, b]. Let µn( · , α) be a sequence of α-dependent families of finite nonegative Borel
measures on R converging to µ( · , α) weakly for every α ∈ R. Suppose the function
α 7→ µn( · , α) belongs to M(R) for each n ∈ N. Finally, assume that the derivative of µn
with respect to dλ satisfies

µ′n(λ, α) > |F (λ)|2, for all (λ, α) ∈ Ωn ⊂ [a, b]× [α1, α2],

where the measurable sets Ωn obey∣∣[a, b]× [α1, α2] \ Ωn
∣∣ < (b− a)(α2 − α1)− ε.

Then µ′(λ, α) > 0 on a subset of [a, b] × [α1, α2] whose measure is not smaller than
(b− a)(α2 − α1)− ε.

The proof of this statement is a counterpart of the proof of the preceding proposition
and it is left to the reader as an exercise. A similar statement was proved in [7].

We conclude this section with a discussion of the following simple claim.
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Proposition 3.4. Let a < b. Let F (λ) 6= 0 be a function analytic on a neighborhood
of the interval [a, b]. Let µ( · , α) be an α-dependent family of finite nonegative measures
on R. Suppose that the derivatives of µ with respect to the Lebesgue measure dλ satisfy
the estimate

µ′(λ, α) ≥ |F (λ)|2(1−Ψ(λ, α)), where

∫ α2

α1

∫ b

a

|Ψ(λ, α)| dλ dα < ε/2.

Then

µ′(λ, α) ≥ 1

2
|F (λ)|2, for all (λ, α) ∈ Ω,

where the measureable set Ω obeys

(5)
∣∣[a, b]× [α1, α2] \ Ω

∣∣ ≤ ε.
Proof. According to Chebyshev’s inequality,

Ψ(λ, α) ≤ 1/2

on a set satisfying condition (5). �

§4. The case of a compactly supported V

In this section, we assume that V belongs to the class V described below.

Definition. We say that a bounded measurable function V from R+ to the set of
bounded selfadjoint operators on H belongs to the class V if

1) there is a bounded interval [0, R] containing the support of V and such that V (x+
R/2) is an odd function of x:

(6) V (x+R/2) = −V (−x+R/2), x ∈ [0, R/2];

2) the range of the operator V (x) is a finite-dimensional subspace H0 ⊂ H which stays
the same when one changes x.

Our proof of Theorem 1.1 is based on the relationship between the derivative of the
spectral measure and the so called scattering amplitude. Both objects should be intro-
duced properly. While the spectral measure can be defined for any selfadjoint operator,
the scattering coefficient will be introduced only for a Schrödinger operator. Let f be a
square integrable function from R+ to H. It is very well known that the quadratic form
of the resolvent of H can be written as a Cauchy integral(

(H − z)−1f, f
)

=

∫ ∞
−∞

dµ(t)

t− z
, Im z 6= 0.

The measure µ in this representation is called the spectral measure of H corresponding
to the element f .

Let us introduce the scattering amplitude. Since the support of the potential V is
compact, there exists an R such that V (x) = 0 for x > R. Take any bounded compactly
supported function f that also vanishes for x > R. Then[

(H − z)−1f
]
(x) = eik|x|Af (k),

for x > R, k2 = z, Im k ≥ 0, Af (k) ∈ H.
(7)

Clearly, the relation

(8) µ′(λ) = π−1 lim
z→λ+i0

Im ((H − z)−1f, f) = π−1 lim
z→λ+i0

Im z‖(H − z)−1f‖2

implies the formula

(9) πµ′(λ) =
√
λ‖Af (k)‖2, k2 = λ > 0.
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To prove (9), define χX to be the characteristic function of a set X ⊂ R+. Since the
limit

lim
z→λ+i0

‖χ[0,b](H − z)−1f‖2

(along the vertical directions) exists and is finite for each b > 0, we infer from (8) that

µ′(λ) = π−1 lim
z→λ+i0

Im z‖χ[R,∞)(H − z)−1f‖2.

Now (9) follows by (7), because

‖χ[R,∞)(H − z)−1f‖2 =
e−2 Im kR

2 Im k
‖Af (k)‖2, for Im k > 0.

The remaining arguments in this paper will be devoted to a lower estimate of ‖Af (k)‖.
For our purposes, it is sufficient to assume that f is the product of the characteristic

function of the unit interval [0, 1] times a unit vector τ ∈ H. Traditionally, H is viewed
as an operator obtained by a perturbation of

H0 = − d2

dx2
.

In its turn, (H − z)−1 can be viewed as an operator obtained by a perturbation of
(H0 − z)−1. The theory of such perturbations is often based on the second resolvent
identity

(10) (H − z)−1 = (H0 − z)−1 − (H − z)−1 αV (H0 − z)−1,

which turns out to be useful for our arguments. As a consequence of (10), we obtain

(11) Af (k) = F0(k)τ −Ag(k), z = k2 + i0, k > 0,

where g(x) = αV (H0 − z)−1f and the number F0(k) ∈ C is defined by

(12) (H0 − z)−1f = eik|x|F0(k)τ, for x > 1.

We will shortly show that, without loss of generality, we may assume that V (x)τ = 0
inside the unit interval [0, 1]. In this case,

(13) g = F0(k)hk, where hk(x) = αeik|x|V τ.

According to (11),

2‖Af (k)‖2 ≥ |F0(k)|2 − 2‖Ag(k)‖2,
which can be written in the form

(14) 2πµ′(λ) ≥ |F0(k)|2
(√

λ− 2 Im
(

(H − z)−1hk, hk

))
, z = λ+ i0,

due to (9) and (13). Therefore, in order to establish the presence of the absolutely
continuous spectrum, we need to show that the quantity

Im
(
(H − z)−1hk, hk

)
is small.

Let us define η setting

α2k−2η(k, α) :=
1

k
Im
(

(H − z)−1hk, hk

)
≥ 0, z = k2 + i0.

Obviously, η is positive for all real k 6= 0, because we agreed that z = k2 ± i0 if ±k > 0.
This is very convenient. Since η ≥ 0, we can conclude that η is small on a rather large
set if the integral of this function is small. That is why we will estimate

(15) J(V ) :=

∫ ∞
−∞

∫ ∞
−∞

η(k, α)

(α2 + k2)

|k| dk dα
(k2 + 1)

=

∫ ∞
−∞

∫ ∞
−∞

η(k, tk)

(k2 + 1)(t2 + 1)
dk dt.
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We will employ a couple of tricks, one of which is related to the involvment of an addi-
tional parameter ε. Instead of dealing with the operator H, we will deal with H + εI
where ε > 0 is small. We will first obtain an integral estimate for the quantity

ηε(k, α) =
k

α2
Im
(

(H + ε− z)−1hk, hk

)
, z = k2 + i0.

Then, since

η(k, α) = lim
ε→0

ηε(k, α) a.e. on R× R,

we conclude by Fatou’s lemma that

J(V ) ≤ lim inf
ε→0

∫ ∞
−∞

∫ ∞
−∞

ηε(k, α)

(α2 + k2)

|k| dk dα
(k2 + 1)

.

The second trick is to set α = kt and represent ηε in the form

(16) ηε(k, kt) = Im
(

(B + 1/k − i0)−1H−1/2
ε v, H−1/2

ε v
)

where v = V τ , Hε = −d2/dx2 +εI, and B is the bounded selfadjoint operator defined by

B = H−1/2
ε

(
−2i

d

dx
+ tV

)
H−1/2
ε .

This operator is bounded, as H
−1/2
ε is a continuous map from L2(R+,H) to W 1

0 (R+,H),
while the middle factor (−2i ddx + tV ) is a continuous map from W 1

0 (R+,H) to L2(R+,H).
Since the quadratic form of the operator B is real, this operator is symmetric, and hence
it is selfadjoint.

In order to justify (16) at least formally, one has to introduce the operator U of
multiplication by the function exp(ikx). Using this notation, we can represent ηε in the
following form

ηε(k, tk) = k Im
(
U−1(H + ε− z)−1Uv, v

)
, z = k2 + i0.

Since we deal with unitary equivalence of operators, we can employ the formula(
U−1(H + ε− z)−1Uv, v

)
=
(

(U−1HU + ε− z)−1v, v
)
, z = k2 + i0.

On the other hand, since H is a differential operator and U is an operator of multiplica-
tion, the commutator [H,U ] := HU − UH can easily be found:

(17)
[
H,U

]
= kU

(
−2i

d

dx
+ k
) ∣∣∣

D(H)
on D(H).

Using the formula U−1HU = H + U−1[H,U ], we infer from (17) that

U−1HU + ε− z = Hε + k
(
−2i

d

dx
+ tV

)
= H1/2

ε (I + kB)H1/2
ε .

If k̃ belongs to the upper half-plane, then so does −1/k̃. Consequently,

(18) k
(
U−1(H + ε− z)−1Uv, v

)
=
(
H−1/2
ε (B + 1/k − i0)−1H−1/2

ε v, v
)
, z = k2 + i0.

In fact, (18) holds true for Im k > 0 when U is not a unitary operator, but we only need
it for k ∈ R.

Since B is a selfadjoint operator, π−1ηε(k, kt) coincides with the derivative of the

spectral measure of the operator B corresponding to the element H
−1/2
ε v. According to

Lemma 2.1, the last observation implies that∫ ∞
−∞

ηε(k, kt)

(1 + k2)
dk ≤ π

(
(B2 + I)−1H−1/2

ε v,H−1/2
ε v

)
,
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which leads to

(19)

∫ ∞
−∞

ηε(k, kt)

(1 + k2)
dk ≤ π

(
B−1H−1/2

ε v,B−1H−1/2
ε v

)
= π‖B−1H−1/2

ε v‖2,

provided B is invertible. Our further arguments will be related to the estimate of the
quantity on the right-hand side of (19). We will show that B has an unbounded inverse
with the property

lim
ε→0
‖B−1H−1/2

ε v‖2 ≤
∫
R+

‖V (x)‖2 dx,

D(B−1) = Ran (B) ⊂W 1
0 (R+,H).

(20)

Our proof of (20) is based on the representation

(21) B−1H−1/2
ε v = H1/2

ε T−1v,

where T ⊂ T ∗ is the first order differential (symmetric) operator defined by

T = −2i
d

dx
+ tV, D(T ) = D(H1/2

ε ) = W 1
0 (R+,H).

As we will see, H
−1/2
ε is a one-to-one mapping of D(T−1) onto D(B−1), and (21) is true

for all v ∈ D(T−1). To establish (21), observe that the formula B = H
−1/2
ε TH

−1/2
ε

leads to the relations Ran(B) ⊂ D(H
1/2
ε ) and H

1/2
ε B = TH

−1/2
ε . The latter of the two

relations clearly implies (21) provided T is invertible and v ∈ D(T−1).
Indeed, any v ∈ D(T−1) can be written in the form v = Tw where w ∈ D(T ) =

D(H
1/2
ε ). Consequently, there is a unique vector u ∈ H for which v = TH

−1/2
ε u =

H
1/2
ε B u. Therefore H

−1/2
ε v ∈ Ran (B) and both sides of (21) coincide with the vector u.

Obviously, B is invertible if T is invertible. On the other hand, one can establish the
invertibility of T by deriving an explicit formula for T−1 (which is also an unbounded
operator). For that purpose we define U0 to be the unitary operator of multiplication by
the solution of the differential equation

d

dx
U0(x) =

it

2
U0(x)V (x), U0(0) = I.

The object on the right-hand side is the composition of two operators in H. The solution
of this differential equation exists on all of R+ because the equation is linear and V ∈ V.
Now we see that

T = −2iU−1
0

[ d
dx

]
U0, and T−1 =

i

2
U−1

0

[ d
dx

]−1

U0.

Since [ ddx ]−1 is precisely the simple integration with respect to x and

d

dx
U0τ =

i

2
tU0V τ

we obtain [
T−1v

]
(x) =

i

2
U−1

0 (x)

∫ x

0

U0(y)V (y)τ dy

=
1

t
U−1

0 (x)(U0(x)− I)τ =
1

t
(I − U−1

0 (x))τ.

(22)

Note that due to condition (6), the function T−1v is compactly supported, which leaves
no doubt about the relation v ∈ D(T−1). Combining (21) with (22) and using the fact

that ‖H1/2
ε u‖2 = ‖ ddxu‖

2 + ε‖u‖2 for all u ∈ D(H
1/2
ε ), we conclude that

(23) lim
ε→0
‖B−1H−1/2

ε v‖2 = lim
ε→0
‖H1/2

ε T−1v‖2 =

∫
R+

‖V (x)U−1
0 (x)τ‖2 dx.
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Thus, (20) is established. Relations (19), (20) lead to the inequality

J(V ) ≤ π2

∫
R+

‖V (x)‖2 dx,

where the quantity J(V ) is from (15). However, we can say more.

Lemma 4.1. Let T > 0. Let V be a potential of the class V such that

(24) V (x)τ = 0, for all x < T.

Then

(25) J(V ) ≤ π2

∫ ∞
T

‖V (x)‖2 dx.

Proof. If (24) holds, then U0(x)τ = τ for all x < T . Therefore, the right-hand side of
(23) can be estimated as follows∫

R+

‖V (x)U−1
0 (x)τ‖2 dx ≤

∫ ∞
T

‖V (x)‖2 dx. �

§5. Approximations of potentials and spectral measures

Proposition 5.1. Let T > 0. Let Ṽ be the potential

Ṽ (x) = V (x)− 〈 · , τ〉V (x)τ − 〈 · , V (x)τ〉τ + 〈V (x)τ, τ〉〈 · , τ〉τ,
for all x < T,

(26)

and let

(27) Ṽ (x) = V (x), for all x > T.

Then

(28)
(
H − z

)−1

−
(
− d2

dx2
+ αṼ − z

)−1

∈ S1

is a trace class operator for any z with Im z > 0.

Proof. Using Hilbert’s identity, we obtain(
H − z

)−1

−
(
− d2

dx2
+ αṼ − z

)−1

= α
(
H − z

)−1

(Ṽ − V )
(
− d2

dx2
+ αṼ − z

)−1

.

Consequently, it is sufficient to prove that

Γ :=
(
− d2

dx2
− z
)−1

(Ṽ − V )
(
− d2

dx2
− z
)−1

∈ S1.

Observe now that Ṽ (x)− V (x) is a finite rank operator of the form

Ṽ (x)− V (x) = w1(x)〈 · , e1(x)〉e1(x) + w2(x)〈 · , e2(x)〉e2(x), ,

where the wj ∈ L1(R+) are real valued compactly supported functions and the ej(x) are

unit vectors in H. Since (− d2

dx2 −z)−1 is an integral operator whose integral kernel r(x, y)
satisfies

sup
x

∫ ∞
0

|r(x, y)|2 dy + sup
y

∫ ∞
0

|r(x, y)|2 dx <∞,

the operators Gj(z) defined by[
Gj(z)u

]
(x) =

∫ ∞
0

|wj(x)|1/2〈r(x, y)u(y), ej(x)〉ej dy

are Hilbert–Schmidt operators. It remains to note that

Γ = G∗1(z̄)Ω1G1(z) +G∗2(z̄)Ω2G2(z)
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where the Ωj are bounded. �

According to Birman’s theorem (see [2, 3]), we can now state the following result.

Proposition 5.2. Let Ṽ be defined as in (26). Then the absolutely continuous parts of

the operators H and − d2

dx2 + αṼ are unitarily equivalent.

Let δ > 0. The proposition allows one to assume that there is a T > 0 having the
following properties:

1) V (x)τ = 0 for all x < T .
2) the value of the integral

∫∞
T
‖V (x)‖2 dx is smaller than δ;

If that is not true, we replace V by Ṽ defined by (26) for a sufficiently large T > 0.

Now we use inequality (14) and employ Proposition 3.4 with

F (λ) = (2π)−1/2F0(
√
λ)λ1/4 and Ψ(λ) =

2 Im((H − z)−1hk, hk)√
λ

.

According to Lemma 4.1, we obtain the following result.

Theorem 5.1. Let 0 < a < b < ∞, let 0 < α1 < α2 < ∞, and let T > 1. For any
ε > 0 there is a number δ > 0 such that for any potential V in the class V having the
properties

1) V (x)τ = 0 for all x < T, and 2)

∫ ∞
T

‖V (x)‖2 dx < δ,

the derivative µ′(λ) = µ′(λ, α) of the spectral measure satisfies the inequality

µ′(λ, α) ≥ (4π)−1|F0(
√
λ)|2λ1/2, for all (λ, α) ∈ Ω,

where the measurable set Ω obeys∣∣[a, b]× [α1, α2] \ Ω
∣∣ ≤ ε.

The proof of the next statement is left to the reader as an exercise. A function V
from R+ to the class of bounded operators on H is said to be measurable provided the
function x 7→ 〈V (x)h, h〉 is measurable for each h ∈ H.

Proposition 5.3. Let V be a measurable operator-valued function obeying∫
R+

‖V (x)‖2 dx <∞.

Assume that

(29) V (x)τ = 0, for all x < T,

where T > 0 is a fixed number. Then there is a sequence of compactly supported operator-
valued functions Vn ∈ V having the following three properties:

1)
Vn(x)τ = 0, for all x < T,

2)

(30)

∫ ∞
T

‖Vn(x)‖2 dx ≤ 2

∫ ∞
T

‖V (x)‖2 dx,

and
3) ∫ K

0

‖
(
Vn(x)− V (x)

)
u(x)‖2 dx→ 0, as n→∞,

for any u ∈ L∞(R+,H) and any K > 0.
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Another statement, which we are going to use, deals with the spectral measures of
operators whose potentials Vn approximate the function V .

Proposition 5.4. Let V ∈ L2(R+,H) and Vn ∈ L2(R+,H) obey (30) for some T > 0.
Let µn and µ be the spectral measures of the operators Hn and H with potentials αVn
and αV, correspondingly. Assume that∫ K

0

‖
(
Vn(x)− V (x)

)
u(x)‖2 dx→ 0, as n→∞,

for any u ∈ L∞(R+,H) and any K > 0.

Then
µn → µ weakly, as n→∞, for all α ∈ R.

The proof of this proposition is rather standard. First observe that the set of finite
linear combinations of functions of the form

φz(t) = Im
(
1/(t− z)

)
with Im z > 0 is dense in the space of functions that are continuous on R and decay at
infinity. Consequently, it suffices to show that∫

R
φz(t) dµn(t)→

∫
R
φz(t) dµ(t) as n→∞

for each z ∈ C+. According to the definition of the measures µn and µ, this is the same
as showing that

Im
(
(Hn − z)−1f, f

)
→ Im

(
(H − z)−1f, f

)
, as n→∞.

The last property follows from the identity(
(Hn − z)−1f, f

)
−
(
(H − z)−1f, f

)
=
(
(Hn − z)−1(V − Vn)(H − z)−1f, f

)
,

because the condition (H − z)−1f ∈W 1
0 (R+,H) implies that

‖(V − Vn)(H − z)−1f‖ → 0

as n→∞. �

According to Proposition 3.2, the assertion below follows from Theorem 5.1 combined
with Propositions 5.3 and 5.4.

Theorem 5.2. Let 0 < a < b <∞, let 0 < α1 < α2 <∞, and let T > 1. For any ε > 0
there is a number δ > 0 such that for any potential V ∈ L2(R+,H) having the properties

1) V (x)τ = 0 for all x < T, and 2)

∫ ∞
T

‖V (x)‖2 dx < δ,

the derivative µ′(λ) = µ′(λ, α) of the spectral measure is positive

(31) µ′(λ, α) > 0, for all (λ, α) ∈ Ω,

where the measurable set Ω obeys∣∣[a, b]× [α1, α2] \ Ω
∣∣ ≤ ε.

Let Eα( · ) be the operator-valued spectral measure of H. Let also

Ωα = {λ ∈ [a, b] : (λ, α) ∈ Ω}
be the cross-section of Ω. One can conclude from inequality (31) that, for any measurable
subset X ⊂ [a, b], the condition Eα(X) = 0 implies the relation∣∣Ωα ∩X∣∣ = 0.
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Using the unitary equivalence claimed by Proposition 5.2, we obtain the following
statement.

Theorem 5.3. Let 0 < a < b <∞, let 0 < α1 < α2 <∞. Assume that V ∈ L2(R+,H).
Then for any ε > 0, there is a measurable set Ω(ε) ⊂ [a, b]× [α1, α2] obeying∣∣[a, b]× [α1, α2] \ Ω(ε)

∣∣ ≤ ε
such that, for any Borel set X ⊂ [a, b] and the cross-section Ωα(ε) defined by

Ωα(ε) = {λ ∈ [a, b] : (λ, α) ∈ Ω(ε)},

the condition Eα(X) = 0 implies the relation∣∣Ωα(ε) ∩X
∣∣ = 0.

Take now a monotonically decreasing sequence εn converging to 0, as n→∞, and set

Ω̃ =

∞⋃
n=1

Ω(εn).

Obviously, Ω̃ is a subset of full measure in [a, b]× [α1, α2]. Consequently,

Ω̃α = {λ ∈ [a, b] : (λ, α) ∈ Ω̃}

is a subset of full measure in [a, b] for almost every α ∈ [α1, α2].

Take now an arbitrary Borel subset X ⊂ [a, b]. If |X ∩ Ω̃α| > 0, then there is an
integer n for which ∣∣Ωα(εn) ∩X

∣∣ > 0.

This condition implies that Eα(X) 6= 0. Thus, the essential support of the absolutely
continuous spectrum of H contains the interval [a, b] for all α such that

(32) |Ω̃α| = b− a.

It remains to note that (32) holds for almost every α ∈ [α1, α2].

This completes the proof of Theorem 1.1. �
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