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Abstract. In this short note we prove Lieb–Thirring inequalities on manifolds with neg-

ative constant curvature. The discrete spectrum appears below the continuous spectrum

[(d− 1)2/4,∞), where d is the dimension of the hyperbolic space. As an application we

obtain a Pólya type inequality with not a sharp constant. An example of a 2D domain is

given for which numerical calculations suggest that the Pólya inequality holds for it.

1. INTRODUCTION

Lieb–Thirring inequalities have important applications in mathematical
physics, analysis, dynamical systems and attractors, to mention a few. A
current state of the art of many aspects of the theory is presented in [11].
We mention here the celebrated paper by Lieb and Thirring [23], where
such inequalities were studied for the questions of stability of matter.

In certain applications Lieb–Thirring inequalities are considered on a
manifold. For example, on torus or sphere one has to impose the zero mean
orthogonality condition, since the Laplacian has a simple zero eigenvalue
corresponding to a constant function, see [12], [15], [29], [14], [13]. Such
inequalities are useful in the study of the dimension of attractors in theory
of Navier-Stokes equation.

In this work we prove Lieb–Thirring inequalities on manifolds with neg-
ative constant curvature. Let Hd, d ≥ 2, be the open upper half-space

Hd = {(x, y) : x ∈ Rd−1, y > 0}

with the Poincare metric ds2 = y−2(dx2+dy2). We consider the self-adjoint
Laplace–Beltrami operator in L2

(
Hd, dx dy

yd

)
−∆h = −yd ∂

∂y
y2−d ∂

∂y
− y2

d−1∑
n=1

∂2

∂x2n
, (1.1)

defined by the lower semi-bounded quadratic form.
The spectrum of the standard Laplacian

−∆ = −
d∑

n=1

∂2

∂x2n
1
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acting in L2(Rd, dx) is absolutely continuous and covers the whole half-line
[0,∞). By contrast, the spectrum of the Laplace operator (1.1) is absolutely
continuous and covers the interval [(d− 1)2/4,∞), see, for example, [24],
[25], [18].

Denote by Lcl
γ,d the value

Lcl
γ,d =

1

(2π)d

∫
Rd

(1− |ξ|2)γ+ dξ =
Γ(γ + 1)

(4π)d/2Γ(γ + d/2 + 1)
.

Let V = V (x) ≥ 0 and let V ∈ Lγ+d/2(Rd). Then the Schrödinger operator
−∆ − V is well defined as a lower semi-bounded self-adjoint operator on
L2(Rd) and the classical Lieb–Thirring inequality states that∑

νγk = Tr (−∆− V )γ− ≤ Lγ,d

∫
Rd

V γ+d/2 dx,

where −νk ≤ 0 are the negative eigenvalues of the Schrödinder operator
−∆− V .

In [23] E.H. Lieb and W. Thirring proved that it holds for finite explicitly
given constants Lγ,d as long as γ > max(0, 1 − d/2). In the case when
d ≥ 3, γ = 0 this bound is known as the Cwikel–Lieb–Rozenblum (CLR)
inequality, see [4, 22, 27]. The second critical case d = 1, γ = 1/2 was
settled by Weidl in [30]. The inequality is known to fail for d = 2, and
γ = 0. Sharp constants are known for γ ≥ 3/2 and γ = 1/2, d = 1:

Lγ,d = Lcl
γ,d, γ ≥ 3/2, d ≥ 1 and L1/2,1 = 2Lcl

1/2,1, (1.2)

see [17] and [8, 9], respectively. In the remaining cases one has

Lγ,d ≤


2Lcl

γ,d, 1/2 ≤ γ, d = 1

R1,1L
cl
γ,d, 1 ≤ γ < 3/2,

2R1,1L
cl
γ,d, 1/2 ≤ γ < 1, d ≥ 2.

(1.3)

The valueR1,1 here,R1,1 ≤ 1.456 . . . , was obtained in the recent paper [10]
on the new bounds for the constants in the Lieb–Thirring inequality for the
one-dimensional Schrödinger operator with an operator-valued potential.

For a comprehensive treatment and references of the subject, see [11].

In this paper we study the spectrum of the Schrödinger operator

−∆h − V. (1.4)

Here V ∈ Lγ+d/2
(
Hd, dx dy

yd

)
, which makes it possible to define this opera-

tor as a lower semi-bounded self-adjoint operator in L2
(
Hd, dx dy

yd

)
. We ob-

tain Lieb–Thirring inequalities for the discrete spectrum below (d− 1)2/4.



LIEB–THIRRING INEQUALITIES ON MANIFOLDS WITH NEGATIVE CURVATURE 3

It is convenient to denote the eigenvalues {λk} of the operator (1.4) in terms
of the negative values {−µk}, where

λk =
(d− 1)2

4
− µk. (1.5)

To the best of our knowledge the Lieb–Thirring inequalities for the
Schödinger operator in the hyperbolic space have never been studied be-
fore. Certain estimates for the eigenvalues of this operator in the non-
Hilbert case were studied in [7]. There was a considerable interest in the
literature concerning the CLR inequality in the hyperbolic metric and other
non-Euclidean metrics, see [1, 19, 20] and the references therein. We also
point out that the Lieb–Thirring inequalities for γ-moments with γ > 0 can
in the standard way be derived from the CLR inequality. However, one has
an obvious restriction d ≥ 3 here in the first place, and, secondly, the con-
stants obtained by this approach are much worse. For instance, even in the
case of Rd the best known estimate for the CLR constant in R3 is Lieb’s
bound L0,3 ≤ 6.8693 · Lcl

0,3 (see [22]), and this factor in the constants will
propagate to higher order γ-moments with γ > 0.

The main result of the paper is the following:

Theorem 1.1. Let V ≥ 0 and γ ≥ 1/2. Then∑
µγ
k ≤ Lγ,d

∫
Hd

V (x, y)γ+d/2 dx dy

yd
, (1.6)

where the constant Lγ,d satisfies

Lγ,d ≤


Lcl
γ,d, 3/2 ≤ γ,

R1,1L
cl
γ,d, 1 ≤ γ < 3/2,

2R1,1L
cl
γ,d, 1/2 ≤ γ < 1.

(1.7)

Remark 1.1. Concerning the constant Lγ,d, this theorem essentially says
that

Lγ,d ≤ Lγ,d

if we interpret Lγ,d as the best known to date constant in the classical Lieb–
Thirring inequality.

Remark 1.2. We do not claim that our estimate of the constant Lγ,d ≤ Lcl
γ,d

for γ ≥ 3/2 in (1.7) is sharp. However, the following Weyl-type asymptotic
formula in [20]:

lim
α→∞

α−d/2N
(
(d− 1)2/4,−∆h − αV ) = Lcl

0,d

∫
Hd

V (x, y)d/2
dx dy

yd
,

where d ≥ 3 andN
(
(d−1)2/4,−∆h−αV ) is the number of the eigenvalues

below the bottom of the continuous spectrum of the operator −∆h − αV ,



4 ALEXEI ILYIN, ARI LAPTEV, AND TIMON WEINMANN

provides some evidence that, in fact, Lγ,d = Lcl
γ,d, γ ≥ 3/2 at least for

d ≥ 3. We shall not go into further details here.

In the next Section 2 we present a simple proof of the fact that the con-
tinuous spectrum of the Laplacian on hyperbolic space with curvature −1
covers the semi-axis [(d − 1)2/4,∞). In Section 3 we give the proof the
main Theorem 1.1 and in Section 4 we obtain the dual inequality that could
be used for estimates of the dimension of attractors in theory of the Navier–
Stokes equation.

In Section 5 we apply Theorem 1.1 to derive an inequality on the number
of eigenvalues below Λ > 0 for Dirichlet Laplace–Beltrami operator on a
domain Ω ⊂ Hd of finite hyperbolic measure.

Assume that Ω ⊂ Ω ⊂ Hd satisfies the inequality

|Ω|h =

∫
Ω

dxdy

yd
<∞.

We consider the Dirichlet eigenvalue problem for the Laplace–Beltrami op-
erator −∆h in L2(Ω, y−ddxdy) defined via the respective quadratic form

−∆hu = λu, u
∣∣
(x,y)∈∂Ω = 0. (1.8)

The spectrum of this operator is discrete and we denote by {λk} its eigen-
values. Such eigenvalues satisfy the inequality

λk >
(d− 1)2

4
.

Similarly to (1.5) it is convenient to introduce the numbers νk such that

λk =
(d− 1)2

4
+ νk (1.9)

and study the counting function N (Λ) of the spectrum

N (Λ) = #{k : νk < Λ}, Λ > 0.

Theorem 1.2. Let |Ω|h < ∞. Then the counting function N (Λ) of the
eigenvalues of the spectral problem (1.8) satisfies the following inequality

N (Λ) ≤
(
1 +

2

d

)d/2 (
1 +

d

2

)
L1,d Λ

d/2|Ω|h, (1.10)

where L1,d is the constant from Theorem 1.1, so that

(1 + d/2)L1,d ≤ R1,1(1 + d/2)Lcl
1,d = R1,1 L

cl
0,d.

The inequality (1.10) is a Pólya type inequality [26] for manifolds with
constant negative curvature, where, we believe, the constant is not sharp.
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Conjecture 1. For the counting function N (Λ) of the eigenvalues

λk = (d− 1)2/4 + νk

of the Dirichlet boundary value problem (1.8) we have

N (Λ) ≤ Lcl
0,d Λ

d/2 |Ω|h. (1.11)

Remark 1.3. At the moment we do not have any examples of Ω for which
the inequality (1.11) holds.

In Section 6 we consider the special case of Theorem 1.2, where Ω is
a product domain Ω = Ω̃ × (a, b), and Ω̃ ⊂ Rd−1, is a domain of finite
Lebesgue measure and 0 < a < b ≤ ∞. This additional structure of
Ω allows us to obtain a better constant than the constant which could be
derived from Theorem 1.1 in the case 1/2 ≤ γ < 1, see Theorem 6.1.
Unfortunately it does not imply the improvement of the constant found in
Theorem 1.2.

Finally in Section 7 we give an example of a domain in H2 supporting
the conjecture 1 using numerics.

2. SOME PRELIMINARY RESULTS

In [24] the author gives a simple proof of the fact that the continuous
spectrum of the operator −∆h in dimension two coincides with the interval
[1/4,∞) by using the Cauchy-Schwarz inequality. Besides, he gives a more
complicated proof of the fact that in the case of Hd, d > 2 the continuous
spectrum fills the semi-axis [(d− 1)2/4,∞).

In this section we present a simple proof of following well-known fact.

Proposition 2.1. Let −∆h be the Laplacian in L2
(
Hd, dx dy

yd

)
, d ≥ 2. Then

its spectrum is absolutely continuous and coincides with

σc = [(d− 1)2/4,∞).

Proof. Let us consider the quadratic form of the operator (1.1)

(−∆hu, u) =

∫
Hn

y2−d

(
|∂yu|2 +

d−1∑
n=1

|∂xnu|2
)
dx dy.

The substitution
y = et, u = e

d−1
2

t v, (2.1)

implies ∫∫
Hd

|u|2 dx dy
yd

=

∫
Rd

|v|2 dx dt.
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and

(−∆hu, u) =

∫
Rd

(
|∂tv|2 +

(d− 1)2

4
|v|2 + e2t

d−1∑
n=1

|∂xnv|2
)
dxdt.

Thus we reduce the hyperbolic Laplacian to the operator in L2(Rd)

− ∂2

∂t2
− e2t ∆x +

(d− 1)2

4
,

and (2.1) generates the isometry between L2
(
Hd, dx dy

yd

)
and L2

(
Rd, dxdt

)
.

Obviously the spectrum of the differential part of the above expression co-
incides with [0,∞) and the term (d−1)2

4
gives the required shift of the spec-

trum. The proof is complete. □

Remark 2.4. It might be interesting to obtain a simple proof of properties of
the spectrum of the operator −∆h in the case when the negative curvature
is not a constant.

In order to prove Theorem 1.1 we need to recall some results on 1D
Schrödinger operators with operator-valued potentials.

Proposition 2.2. Let Q = Q(x) ≥ 0 be a self-adjoint operator-valued
function in a Hilbert space G for almost every x ∈ R. We assume that
TrQ(·) ∈ Lγ+1/2(R, G), γ ≥ 1/2. Then

Tr

(
− d2

dx2
⊗ IG −Q

)γ

−
≤ Lγ,1

∫
R
TrQγ+1/2 dx,

where IG is the identity operator in G, and Lγ,1 is defined in (1.3).

If γ = 1/2 then the constant Lγ=1/2,1 = 2Lcl
1/2,1 and it is sharp. This was

obtained in [8] and from this one immediately obtains that Lγ,1 ≤ 2Lcl
γ,1

with 1/2 ≤ γ < 1. (For the scalar case the sharp constant in the case
γ = 1/2 was obtained in [9]).

If γ = 1 then the sharp constant is unknown and the best known constant
for some years was referred to [5] (see also [6]). It is only recently this
constant was improved in the paper [10], where the authors have shown
that L1,1 ≤ R1,1L

cl
1,1 with R1,1 ≤ 1.456 . . . . This leads to the improved

estimate Lγ,1 ≤ R1,1L
cl
γ,1 with 1 ≤ γ < 3/2.

Finally for any γ ≥ 3/2 the above Proposition was proved in [17] and in
this case we have sharp constants Lγ,1 = Lcl

γ,1.
In all cases the authors first obtained inequalities for γ = 1/2, 1 and 3/2

that were afterwards extended to arbitrary γ’s using lifting argument found
by Aizenman and Lieb [2].
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3. THE PROOF ON THE MAIN RESULT

Let us consider the quadratic form of the operator (1.1)

(−∆hu, u) =

∫
Hd

y2−d

(
|∂yu|2 +

d−1∑
n=1

|∂xnu|2
)
dx dy.

Applying the exponential change of variables (2.1) we reduce the problem
to the study of the spectrum defined by the form in L2(Rd)∫

Rd

(
|∂tv|2 + e2t

d−1∑
n=1

|∂xnv|2 − V (x, et)|v|2
)
dxdt = −µ

∫
Rd

|v|2 dxdt.

Using the variational principle and the Lieb–Thirring inequalities for 1D
Schrödinger operators with operator-valued symbols, see Proposition 2.2,
we obtain

∑
µγ
k(−∆h − V ) ≤

∑
µγ
k

(
− d2

dt2
−

(
e2t

d−1∑
n=1

∂2

∂x2n
+ V (x, et)

)
+

)

≤ Lγ,1

∫
R
Tr

(
−e2t

d−1∑
n=1

∂2

∂x2n
− V (x, et)

)γ+1/2

−

dt.

This trick reduced the problem to a Schrödinger operator in L2(Rd−1),
where the exponent e2t is just a parameter:

Tr

(
−e2t

d−1∑
n=1

∂2

∂x2n
− V (x, et)

)γ+1/2

−

= e2t(γ+1/2)Tr

(
−

d−1∑
n=1

∂2

∂x2n
− e−2t V (x, et)

)γ+1/2

−

.

Applying in dimension d− 1 the standard Lieb–Thirring inequality we find∑
µγ
k ≤ Lγ,1Lγ+1/2,d−1

∫
Rd

e(1−d)t V (x, et)γ+d/2 dxdt

= Lγ,1Lγ+1/2,d−1

∫
Hd

V (x, y)γ+d/2 dxdy

yd
.

Therefore the constant Lγ,d in (1.6) satisfies

Lγ,d ≤ Lγ,1Lγ+1/2,d−1,
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and consequently satisfies the explicit bound (1.7) if we recall (1.2), (1.3)
and the relation

Lcl
γ,1L

cl
γ+1/2,d−1 = Lcl

γ,d.

The proof is complete.

4. DUAL INEQUALITIES

Consider an orthonormal set of function {um}Mm=1 in L2(Hd, y−d dxdy),
which belong to the Sobolev space H1(Hd, y−d dxdy) with norm

∥u∥2H1 =

∫
Hd

y−d|u|2 dx dy +
∫
Hd

y2−d

(
|∂yu|2 +

d−1∑
n=1

|∂xnu|2
)
dx dy.

Using the exponential change of variables

y = et, um = e(d−1)t/2 vm

we find

δm,l =

∫
Hd

umul
dxdy

yd
=

∫
Rd

vmvl dxdt.

Namely, this shows that if the functions {um}Mm=1 are orthonormal in
L2(Hd, y−d dxdy) then the functions {vm}Mm=1 are orthonormal in L2(Rd).

Setting γ = 1 we obtain by the variational principle for sums of eigen-
values (see [11, Corollary 1.35])

M∑
m=1

∫
Rd

(
|∂tvm|2 + e2t

d−1∑
n=1

|∂xnvm|2 − V (x, et)|vm|2
)
dxdt

≥ −
∑
m

µm ≥ −L1,d

∫
Rd

V (x, et)1+d/2 dxdt.

Thus,

M∑
m=1

∫
Rd

(
|∂tvm|2 + e2t

d−1∑
n=1

|∂xnvm|2
)
dxdt

≥
∫
Rd

(
V (x, et)

M∑
m=1

|vm|2 − L1,d V (x, et)1+d/2

)
dxdt

=

∫
Rd

(
V (x, et) ρ̃− L1,d V (x, et)1+d/2

)
dxdt,

where ρ̃ =
∑N

m=1 |vm|2. We now choose

V =

(
ρ̃

L1,d(1 + d/2)

)2/d
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and find
M∑

m=1

∫
Rd

(
|∂tvm|2 + e2t

d−1∑
n=1

|∂xnvm|2
)
dxdt ≥ K1,d

∫
Rd

(ρ̃)1+2/d dxdt,

(4.1)
where

K1,d =

[
2

d

(
1 +

d

2

)1+2/d

L
2/d
1,d

]−1

.

Returning to the orthonormal system of functions {um} and denoting by
ρ =

∑M
m=1 |um|2 we obtain∫

Rd

(ρ̃)1+2/d dxdt =

∫
Hd

y
2(1−d)

d ρ1+2/d dxdy

yd
.

Besides, when passing from the quadratic forms on the left hand side of
(4.1) to the quadratic forms (−∆hum, um) we have to add the shift

(d− 1)2/4∥um∥L2(Hd,y−ddxdy) = (d− 1)2/4, m = 1, 2, . . . ,M.

Finally we have

Theorem 4.1. Let {um}Mm=1 ∈ H1(Hd, y−ddxdy) be an orthonormal sys-
tem of function in L2(Hd, y−ddxdy). Then

M∑
m=1

∫
Hd

y2−d

(
|∂yum|2 +

d−1∑
n=1

|∂xnum|2
)
dx dy

≥ K1,d

∫
Hd

y
2(1−d)

d ρ1+2/d dxdy

yd
+M

(d− 1)2

4
.

We now single out the one-function case (that is, M = 1) and for a
u ∈ H1(Hd, y−ddxdy) we denote

∥u∥ =

(∫
Hd

|u|2 dxdy
yd

)1/2

.

Then

Corollary 4.1. For a function u ∈ H1(Hd, y−ddxdy) we have

∥u∥4/d
∫
Hd

y2−d
(
|∂yu|2 + |∇xu|2

)
dxdy

≥ K1,d

∫
Hd

y
2(1−d)

d |u|2+4/d dxdy

yd
+

(d− 1)2

4
∥u∥2+4/d.
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5. PROOF OF THEOREM 1.2

Let Ω ⊂ Ω ⊂ Hd be a domain of finite hyperbolic measure |Ω|h < ∞.
Let us consider (in the sense of quadratic forms) the Dirichlet boundary
value problem in L2(Ω, y−ddxdy), (see (1.8),(1.9))(

−∆h −
(d− 1)2

4

)
u = νu, u|∂Ω = 0.

The spectrum of this operator is discrete. In order to estimate such spec-
trum we introduce the Schrödinger operator in L2(Hd, y−ddxdy) with the
potential

V =

{
Λ, (x, y) ∈ Ω,

0, (x, y) /∈ Ω.

Due to the variational principle (more precisely, by comparing the domains
of the Dirichlet Laplacian and the Schrödinger operator and using the ex-
tension by zero) we see that the negative eigenvalues −µk of the operator

−∆h −
(d− 1)2

4
− V

satisfy the inequality Λ − µk ≤ νk. Therefore by applying Theorem 1.1
with γ = 1 we find∑

k

(Λ− νk)+ ≤
∑
k

µk ≤ L1,d Λ
1+d/2

∫
Ω

dxdy

yd
= L1,d Λ

1+d/2 |Ω|h.

Then for any Υ > Λ

N (Λ) ≤ 1

Υ− Λ

∑
k

(Υ− νk)+ ≤ L1,d
Υ1+d/2

Υ− Λ
|Ω|h.

Minimising the right hand side of the latter inequality we find

Υ = Λ
1 + d/2

d/2

and recalling that L1,d ≤ L1,d ≤ R1,1L
cl
1,d we finally obtain

N (Λ) ≤
(
1 +

d

2

)(
1 +

2

d

)d/2

R1,1 L
cl
1,d |Ω|h Λd/2. (5.1)

This concludes the proof of Theorem 1.2.
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6. A SPECIAL CASE OF THEOREM 1.2

Let Ω = Ω̃ × (a, b) ⊂ Hd, where Ω̃ ⊂ Rd−1 and 0 < a < b ≤ ∞. We
assume that the Lebesgue measure |Ω̃| <∞, so that the hyperbolic measure
is finite

|Ω|h = |Ω̃|
∫ b

a

dy

yd
<∞.

We consider the Dirichlet problem in L2
(
Ω, y−ddxdy

)
−∆hu = λu, u

∣∣
∂Ω

= 0,

Using the substitution (2.1) we reduce the problem to(
−∂2t − e2t∆x +

(d− 1)2

4

)
v(x, t) = λv(x, t) v

∣∣
∂(Ω̃×(α,β))

= 0,

(6.1)
where α = ln a, β = ln b. As before it is convenient to introduce values ν

λ =
(d− 1)2

4
+ ν

Due to the product structure of Ω the eigenfunctions {vℓk}∞ℓ,k=1 of the prob-
lem can be found as the product

vℓk(x, t) = φℓ(x)ψℓk(t),

where φℓ satisfy the Dirichlet boundary value problem

−∆xφℓ = κℓ φℓ, φℓ

∣∣
∂Ω̃

= 0.

and

−∂2t ψℓk(t) + e2t κℓ ψℓk(t) = νℓk ψℓk(t), ψℓk(t)
∣∣
t=α,β

= 0. (6.2)

Note that the functions {φℓ}∞ℓ=1 give us an orthonormal basis in L2(Ω̃) and
for each fixed ℓ ∈ N we have κℓ > 0. Therefore the spectrum of opera-
tor (6.2) is discrete (including the case when β = ∞) and for each ℓ the set
of functions {ψℓk}∞k=1 is an orthonormal basis in L2(α, β).

Altogether we have the equation(
−∂2t − e2t∆x

)
φℓ(x)ψℓk(t) = νℓk φℓ(x)ψℓk(t),

where {
(d− 1)2

4
+ νℓk

}∞

ℓ,k=1

are all eigenvalues of the problem (6.1).
Using the notations from Section 5 and applying Lieb–Thirring inequalities
in Proposition 2.2 for the 1/2-moment of the Schrödinger operator with the
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operator-valued potential −e2t∆x − Λ with the sharp constant 2 Lcl
1/2,1 (see

[8]) we obtain
∞∑

ℓ,k=1

(Λ− νℓk)
1/2
+ = Tr

(
−∂2t − e2t∆x − Λ

)1/2
−

≤ 2 Lcl
1/2,1

∫ β

α

Tr
(
Λ + e2t∆x

)
+
dt.

The multiplier e2t in the study of the trace Tr (Λ + e2t∆x)+ could be con-
sidered as a constant. Therefore applying Berezin–Li &Yau inequality for
the Dirichlet Laplacian in Ω̃ ⊂ Rd−1 (see [3],[21], [16] and also [11, Sec-
tion 3.5]) we find

Tr
(
Λ + e2t∆x

)
+
=
∑
ℓ

(Λ− e2tκℓ)+

≤ |Ω̃| (2π)1−d

∫
Rd−1

(Λ− e2t |ξ|2)+ dξ = Lcl
1,d−1 |Ω̃|Λ(d+1)/2 e(1−d)t.

Finally by using
Lcl
1/2,1L

cl
1,d−1 = Lcl

1/2,d

and returning to variables (y, x) we arrive at

∞∑
ℓ,k=1

(Λ− νℓk)
1/2
+ ≤ Λ

d+1
2 2 Lcl

1/2,d

∫ β

α

e(1−d)t dt |Ω̃|

= Λ
d+1
2 2 Lcl

1/2,d

∫
Ω

dxdy

yd
= Λ

d+1
2 2 Lcl

1/2,d |Ω|h.

Using the standard Aizenman–Lieb arguments we can extent the above in-
equality to the γ-Riesz means with 1/2 ≤ γ < 1 and obtain

Theorem 6.1. Let Ω = Ω̃ × (a, b) ⊂ Hd, where Ω̃ ⊂ Rd−1 with |Ω̃| < ∞,
and further let 0 < a < b ≤ ∞. Then for the values {νℓk}∞ℓ,k=1 related to
the eigenvalues of the Dirichlet Laplacian (1.1) via the equation

λℓk =
(d− 1)2

4
+ νℓk

we have
∞∑

ℓ,k=1

(Λ− νℓk)
γ
+ ≤ Λ

d
2
+γ 2 Lcl

γ,d |Ω|h, 1/2 ≤ γ < 1. (6.3)

Remark 6.5. The constant 2Lcl
γ,d, 1/2 ≤ γ < 1 is better than the constant

2R1,1 L
cl
γ,d that could be obtained from Theorem 1.1.
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Similarly to Section 5 we can use the inequality (6.3) for estimating the
counting function N (Λ) for spectrum of the Dirichlet Laplacian (1.1) in
domain with the product structure. Indeed, for any Υ > Λ

N (Λ) ≤ 1

(Υ− Λ)1/2

∞∑
ℓ,k=1

(Υ− νℓk)
1/2
+ ≤ 2Lcl

1/2,d

Υ(d+1)/2

(Υ− Λ)1/2
|Ω|h.

Minimising the right hand side of the latter inequality we find Υ = Λ1+d
d

and thus

N (Λ) ≤
(
d+ 1

d

)(d+1)/2 √
d 2Lcl

1/2,d |Ω|h Λd/2. (6.4)

However, the ratio of the constants (6.4) and (5.1) is greater than one and
therefore Theorem 6.1 does not imply any improvement for the inequal-
ity (5.1).

0 5 10 15 20 25 30 35 40
1.05

1.1

1.15

1.2

1.25

d

FIGURE 1. The graph of the ratio of the constants on the
right-hand sides in (6.4) and (5.1), respectively.

7. A NUMERICAL EXAMPLE SUPPORTING CONJECTURE 1

Let d = 2 and let

Ω = (0, π)× (e−1, e) =
{
(x, y) : x ∈ (0, π), y ∈ (e−1, e)

}
with

|Ω|h =

∫ π

0

dx

∫ e

e−1

dy

y2
= π(e− e−1).
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Consider the Dirichlet Laplacian −∆h in L2(Ω, y−2dxdy) defined in (1.1).
Using the notations from Section 6 we have α = −1, β = 1. Obviously the
eigenvalues of the problem

−∂2xφ = κφ, φ
∣∣
x=0,π

= 0

are κℓ = ℓ2, ℓ ∈ N.
The arguments from Section 6 imply that the problem is reduced to the

study of the eigenvalues νℓk satisfying the equation

−∂2t ψℓk(t) + e2t ℓ2 ψℓk(t) = νℓk ψℓk(t), ψℓk(t)
∣∣
t=−1,1

= 0. (7.1)

Now comes numerics to prove the following Pólya type inequality (see
Fig. 2):

N (Λ) = #{ℓ, k : νℓk < Λ} ≤ (2π)−2

∫ π

0

∫ 1

−1

∫
ξ22+e2tξ21<Λ

dξ1dξ2dtdx

= (2π)−2πΛ

∫ 1

−1

e−tdt

∫
ξ21+ξ22<1

dξ2dξ1 =
1

4
Λ
(
e− e−1

)
= Lcl

0,2Λ|Ω|h.

0 200 400 600 800 1000
0

100

200

300

400

500

600

Λ

FIGURE 2. The graph N (Λ) shown in black and the graph
of Lcl

0,2Λ|Ω|h is shown in red.

Let us say a few words about the calculations of the eigenvalues of the
collection of problems (7.1). We use the Chebyshev differentiation ma-
trix [28] for the spectral approximation of the derivative (and this matrix
squared for the second derivative) for the numerical solution of the eigen-
value problems (7.1) (we observe that the potentials are analytic). We have
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used matrices of order 400 × 400. The accuracy is tested against the prob-
lem (7.1) with l = 0, so that the corresponding eigenvalues n2 · 4

π2 are
computed for n = 1, . . . , 200 with correct 14 decimal places. We therefore
reasonably expect that the accuracy is of the similar order for ℓ ≥ 1.

We set Λ ≤ 1000. Then to calculate N (Λ) it is enough to limit l ≤ 50,
since the first eigenvalue of (7.1) with l = 50 is already greater than 1000.
The eigenvalues νℓk are of the order k2 · 4

π2 and therefore the length [1 : 200]
of each the sequence of eigenvalues νℓk taken into account for each fixed
ℓ ≤ 50 is also more than enough for Λ ≤ 1000.
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