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Abstract. We discuss properties of eigenvalues of non-self-adjoint Schrödinger

operators with complex-valued potential V . Among our results are es-

timates of the sum of powers of imaginary parts of eigenvalues by the

Lp-norm of =V .

1. Introduction

Throughout the paper, f± denotes either the positive or the negative part
of f , which is either a function or a self-adjoint operator. The symbols <z
and =z denote the real and the imaginary part of z. If a is a function on Rd,
then a(i∇) is the operator whose integral kernel is (2π)−d

∫
eiξ(x−y)a(ξ)dξ.

Let H be a non-self-adjoint Schrödinger operator in L2(Rd)

H = −∆ + V (x)

with a complex-valued potential V . We call λ an eigenvalue of H if there
is a solution of the equation Hψ = λψ for some ψ ∈ L2. A given number
λ ∈ C may occur several times in this list according to the dimension of the
generalized eigenspace {ψ : (H − λ)kψ = 0 for some k ∈ N}, which is called
the algebraic multiplicity. In principle a generalized eigenspace could have
infinite dimension, but, as we shall see, this will not occur in the situations
considered in this paper. We deal with operators that have countably many
eigenvalues lying in a bounded subset of the cut plane C\ [0,∞). We denote
them by λj , j = 1, 2, 3, . . . listing them by decreasing values of their modules
and repeated according to their algebraic multiplicities.

The main result of [8] tells us, that for any t > 0, the eigenvalues λj of H
lying outside the sector {z : |=z| < t <z} satisfy the estimate∑

|λj |γ ≤ C

∫
|V (x)|γ+d/2dx, γ ≥ 1,

0Key Words: Schrödinger operator, eigenvalues of non-self-adjoint operators, complex

potential
5MSC: Primary, 35P15; Secondary, 81Q10

The authors would like to thank Grigori Rozenblioum, Rupert Frank, Stanislav

Molchanov and Robert Seiringer for their remarks.

1



2 ARI LAPTEV AND OLEG SAFRONOV

where the constant C may depend on t, γ and d.
In this paper we study inequalities on the eigenvalues lying inside the

conical sector {z : |=z| < t<z}, so they might be close to the positive half-
line. In particular, our results provide some information about the rate of
accumulation of eigenvalues to the positive real half-line R+ = [0,∞).

Theorem 1. Let <V ≥ 0 be a bounded function. Assume that =V ∈ Lp(Rd),
where p > d/2 if d ≥ 2 and p ≥ 1 if d = 1. Then the eigenvalues λj of the
operator H = −∆ + V satisfy the estimate∑

j

( =λj

|λj + 1|2 + 1

)p

+
≤ C

∫
Rd

(=V )p
+(x) dx. (1.1)

The constant C can be computed explicitly:

C = (2π)−d

∫
Rd

dξ

(ξ2 + 1)p
. (1.2)

Note that the right hand side of (1.1) is independent of real part of the
potential V and therefore the statement is true for arbitrary <V ≥ 0. It is
not the case when we try to obtain an estimate of the sum

∑
j(=λj/(|λj +

1|2 + 1))p
+ where we allow p ≤ d/2 and where a certain regularity of <V is

required.

Theorem 2. Let <V ≥ 0 and =V be two bounded real valued functions.
Assume that =V ∈ Lp(Rd), where p > d/4 if d ≥ 4 and p ≥ 1 if d ≤ 3.
Then the eigenvalues λj of the operator H = −∆ + V satisfy the estimate∑

j

( =λj

|λj + 1|2 + 1

)p

+
≤ C (1 + ||V ||∞)2p

∫
Rd

(=V )p
+(x) dx, (1.3)

where

C = (2π)−d

∫
Rd

dξ

((ξ2 + 1)2 + 1)p
. (1.4)

Next Theorems 3-4 give sufficient conditions on V that guarantee conver-
gence of the sum ∑

a<<λj<b

|=λj |γ <∞

for 0 ≤ a < b <∞.
Let us introduce W = (|V |2 + 4=V )+ and let

Ψb(W ) =
∫

Rd

W d/4−1/2+rdx+ bd/2−1

∫
Rd

W rdx, d ≥ 2.
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Theorem 3. Assume that γ > 3/2 and r ∈ (γ−1
2 , γ) and let V ∈ Ld/2−1+2r(Rd)∩

Lr(Rd), d ≥ 2. Then the eigenvalues λj of the operator H lying inside the
semi-infinite strip Πb = {z : 0 < <z < b, =z > 0} satisfy the inequality∑

λj∈Πb

|=λj |γ ≤ C|Ψb(W )|
2γ−1
2r−1 (b+ |Ψb(W )|

1
2r−1 ). (1.5)

The constant C in this inequality depends on d, γ and r.

Applying the same method we also prove:

Theorem 4. Let λj be the eigenvalues of the operator H lying inside the
semi-infinite strip Πa,b = {z : a < <z < b, =z > 0} with a > 0. Then for
any γ > 3/2 and r ∈ (γ − 1

2 , γ) the condition V ∈ L2r(R) ∩ Lr(R) implies∑
λj∈Πa,b

|=λj |γ ≤ C|Φa(W )|
2γ−1
2r−1 (b+ |Φa(W )|

1
2r−1 ),

where
Φa(W ) = a−1/2

∫
R
W rdx.

The constant in this inequality depends on γ and r.

Note that in Theorems 3 and 4 the inequality γ ≥ 3/2 is required in any
dimension while in Theorems 1 and 2 the values of p could be smaller in
lower dimensions.

One should mention, that the paper [8] had been motivated by a question
of E.B. Davies (see [1] and [7]), where he obtains that if d = 1 and V ∈ L1(R),
then all eigenvalues λ of H which do not belong to R+ satisfy

|λ| ≤ 1
4

(∫
|V (x)|dx

)2
.

The question was raised if a similar estimate holds in dimension d ≥ 2. The
following conjecture seems to be reasonable

Conjecture. Let d ≥ 2, 0 < γ ≤ d/2 and let V ∈ Ld/2+γ(Rd) be a
complex-valued potential. Then for any eigenvalue λ /∈ R+ of the operator
H = −∆ + V

|λ|γ ≤ C

∫
Rd

|V (x)|d/2+γdx, (1.6)

for every complex valued potential and every eigenvalue λ /∈ R+ of the
operator H = −∆ + V .

We carefully avoid the case γ > d/2, since the operator H in this case
might have arbitrary large positive eigenvalues due to Wigner-Von Neumann
example [17] (we are grateful to S. Molchanov for drawing our attention to
this circumstance). So far, we are able to prove only the following result
related to this conjecture:
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Theorem 5. Let V be a function from Lp(Rd), where p ≥ d/2, if d ≥ 3;
p > 1, if d = 2, and p ≥ 1, if d = 1. Then every eigenvalue λ of the operator
H = −∆ + V with the property <λ > 0 satisfies the estimate

|=λ|p−1 ≤ |λ|d/2−1C

∫
Rd

|V |pdx. (1.7)

The constant C in this inequality depends only on d and p. Moreover, C =
1/2 for p = d = 1.

The inequality (1.7) was established in [1] in the case d = p = 1. We
prove it in higher dimensions and in dimension d = 1 for p > 1.

We also show the elementary estimate (see Theorem 16)

|=
√
λ|2γ ≤ C

∫
R3

|V |3/2+γdx, γ > 0, d = 3,

however it is not quite the same as (1.6). While we are not able to prove
Conjecture 1.1, we find some information about the location of eigenvalues
of the operator −∆+iV with a positive V ≥ 0, see Thorem 13. In particular,
in Theorem 15 we prove that if d = 3 and

∫
V dx is small and λ /∈ R+ is an

eigenvalue of −∆+iV , then |λ|must be large. It might seem that eigenvalues
do not exist at all for small values of

∫
V dx, however their presence in such

cases can be easily established using scaling.

Proposition 1. Let d ≥ 3. Then there is a sequence of positive functions
Vn ≥ 0 such that the “largest modulus” eigenvalue λn /∈ R+ of the operator
−∆ + iVn satisfies |λn| → ∞ as n→∞, while limn→∞

∫
Vn(x)dx = 0.

Proof. If λ is an eigenvalue of −∆ + iV (x), then n2λ is an eigenvalue of
−∆+n2iV (nx). It remains to note that

∫
n2V (nx)dx = Cn2−d. The idea of

the proof of existence of a non-real eigenvalue of −∆+ iV (x) at least for one
V ≥ 0 is to start with the one-dimensional case, when V (x) = δ(x)+δ(x−ε).
In this case, there is an eigenvalue of H that behaves like 1 + iαε+O(ε2) as
ε → 0. If V is spherically symmetric, then the multi-dimensional case can
be reduced to the one-dimensional case by separation of variables. �

Remark. Note that our results also imply that the eigenvalues of −∆+ iV

can not accumulate to zero in d = 3, if V ≥ 0 is integrable (Corollary 5).

2. Preliminaries

In what follows, the inner products and the norms in various spaces are
denoted by (·, ·) and || · || respectively.

1. Let a[·, ·] be a sesquilinear form in a Hilbert space H. We assume that
its domain d[a] is dense in H and a is semibounded from below and closed
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on d[a]. The form a induces the selfadjoint operator A in H. Fix the value
of γ ∈ R, such that aγ := a+ γ ≥ 1, i.e.

aγ [x, x] = a[x, x] + γ||x||2 = ||x||2, x ∈ d[a],

and denote by Hγ [a] the (complete) Hilbert space d[a] with the metric form

aγ [x, x] = ||(A+ γI)1/2x||2, x ∈ d[a].

Let V : H 7→ H be a selfadjoint linear operator, satisfying D(|V |1/2) ⊃ d[a]
and

G := |V |1/2(A+ γI)−1/2 ∈ S∞ (2.1)

where S∞ denotes the space of compact operators in H. Put

v[x, y] = (
V

|V |1/2
x, |V |1/2y). (2.2)

Then the form v is compact on d[a]. This means that the form v is continuous
on Hγ [a] and the corresponding operator Q (determined by the relations
aγ [Qx, y] = v[x, y] for x, y ∈ d[a]) is compact on Hγ [a]. Define the operator
H by setting

H + γI = (A+ γI)(I + iQ), (2.3)

on the domain D(H) = (I+ iQ)−1D(A). It is clear that the operator H can
be interpreted as the sum

H = A+ iV.

Proposition 2. The operator H defined in (2.3) is densely defined and
closed.

Proof. Let us first prove that H is densely defined. Assume the opposite,
that there is a non-zero vector h ∈ d[a] such that aγ [(I + iQ)−1u, h] = 0 for
all vectors u ∈ D(A). Then aγ [u, (I − iQ)−1h] = 0 for all u ∈ d[a], which
implies that (I−iQ)−1h = 0. The latter relation contradicts the assumption
that h 6= 0.

In order to prove that H is closed, it is sufficient to observe that H + γI

is invertible and prove that the inverse is bounded. But this follows from
the relation

(H + γI)−1 = (I + iQ)−1(A+ γI)−1,

and the fact that (A+ γI)−1 maps continuously H to Hγ [a]. �

Remark. The condition that the sesquilinear form v is generated by a
self-adjoint operator V is excessive. We can always define H by (2.3), as
soon as we know that v[u, u] = aγ [Qu, u], where Q is compact in the space
Hγ [a]. This remark allows one to consider the case when the elliptic operator
A = ∆2 is perturbed by a differential operator of first order.
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Under the above assumptions, the difference between the resolvents of the
operators A and H is compact. Hence, the spectrum σ(H) of the operator
H is discrete in C \ σ(A).

2. Let H be as described above. In order to develop the perturbation
theory suitable for non-selfadjoint operators, we consider a contour C which
contains a finite number of igenvalues λ1, λ2, . . . , λm of the operatorH. Then
the projection onto the span of the corresponding root vectors is given by
the formula

P =
1

2πi

∫
C
(H − z)−1dz.

Lemma 1 (see, for example, [13]). If P and P0 are two projections such
that rankP 6= rankP0, then

||P − P0|| ≥ 1.

Consequently, if Hn is a family of closed operators in H having the prop-
erty that σ(Hn) \ R is discrete and satisfying the condition

(Hn − z)−1 − (H − z)−1 → 0,

as n → ∞, for some point z, then non-real eigenvalues of Hn converge to
non-real eigenvalues of H and, possibly, to the real part of σ(H).

3. We already know that A is semibounded from below. Suppose also
that the negative spectrum of A is discrete. Then the operator H has only
discrete set of eigenvalues in the left half-plane Cleft = {z : <z < 0}.
Moreover, suppose that λj ∈ Cleft are eigenvalues of the operator H, and
τj are negative eigenvalues of A enumerated in the order of increasing real
parts. Then ∣∣∣< n∑

1

λj

∣∣∣ ≤ n∑
1

|τj |

for all n. Indeed, let P be the orthogonal projection onto the span of eigen-
vectors xj corresponding to λj , 1 ≤ j ≤ n. Then

trHP =
n∑
1

λj .

Consequently,

<
n∑
1

λj =
n∑
1

(Axj , xj)

≥ min
P

tr
[
((A+ γ)1/2P )∗A(A+ γ)−1(A+ γ)1/2P

]
, (2.4)
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where the minimum is taken over all orthogonal projections P of rank n

with the property RanP ⊂ d[a]. Thus,
n∑
1

<λj ≥
n∑
1

τj (2.5)

since the minimum in the right hand side of (2.4) coincides with the sum in
the right hand side of (2.5).

Corollary 1. Let γ > 0. Then
n∑
1

(<λj + γ)− ≤
n∑
1

(τj + γ)− .

4. Let T be a bounded operator in a Hilbert space, whose spectrum outside
the unit circle {z : |z| > 1} is discrete. Suppose also that the essential
spectrum of the operator (T ∗T )1/2 is contained in [0, 1]. Let λj be the
eigenvalues of the operator T lying outside of the unit circle, and let sj > 1
be the eigenvalues of (T ∗T )1/2. If we enumerate the sequences |λj | and sj

in the decreasing order, then
n∏
1

|λj | ≤
n∏
1

sj (2.6)

for all values of n. One should mention also that, if one of the sequences
ends at j = j0, we extend it by setting it equal to 1 for j > j0.

This inequality has been discovered for compact operators by H. Weyl
(see [18]). Weyl’s proof is carried over to the case of bounded. Indeed, let
P be the orthogonal projection onto the span of eigenvectors corresponding
to λj , 1 ≤ j ≤ n. Then for any α > 0

det (I + P (αT ∗T − I)P ) = αn
n∏
1

|λj |2.

Consequently,

αn
n∏
1

|λj |2 ≤ det (I + P (αT ∗T − I)+P )

≤ det (I + (αT ∗T − I)1/2
+ P (αT ∗T − I)1/2

+ ).

Since (αT ∗T − I)1/2
+ P (αT ∗T − I)1/2

+ ) ≤ (αT ∗T − I)+) we can remove the
orthogonal projection P in the right hand side and obtain

αn
n∏
1

|λj |2 ≤ det (I + (αT ∗T − I)+) =
∏

αs2
j>1

αs2j .
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It remains to choose α = s−2
n . Note that if the number of sj > 1 is finite,

we can take α = 1 to obtain that
n∏
1

|λj |2 ≤
∏
s2
j>1

s2j .

for all n.

Corollary 2. Let γ ≥ 1. Then
n∑
1

(|λj |2 − 1)γ ≤
n∑
1

(s2j − 1)γ

for all n.

Proof. Our arguments are quite standard and probably can be compared
with the ones in the book by Birman and Solomyak [4], which contains a
survey on different inequalities for compact operators. It is sufficient to
consider the case γ > 1, because the proof in the case γ = 1 is obtained by
passing to the limit as γ → 1.

As a consequence of (2.6), we obtain that
n∑
1

log |λj | ≤
n∑
1

log sj . (2.7)

Moreover,
n∑

j=1

(log |λj | − η)+ ≤
n∑

j=1

(log sj − η)+ (2.8)

for any −∞ < η < ∞. Note now that the function φ(t) = (e2t − 1)γ is
representable in the form

φ(λ) =
∫ ∞

0
(λ− t)+φ′′(t) dt and φ′′(t) ≥ 0 for t ≥ 0.

Since φ(log |λ|) = (|λ|2 − 1)γ , the statement of Corollary 2 for γ > 1 follows
from (2.8). �

5. Let T be a compact operator in a Hilbert space and let n(s, T ) be the
counting function of its s-numbers (eigenvalues of

√
T ∗T )

n(s, T ) = card{j : sj > s}, s > 0.

Then by Ky Fan inequality (see [10]) for any pair of compact operators T1

and T2 and s1, s2 > 0

n(s1 + s2, T1 + T2) ≤ n(s1, T1) + n(s2, T2).

The class of operators T for which

[T ]pp := sup
s>0

spn(s, T ) <∞
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is called the weak Neumann-Schatten class Σp.
Let F Fourier transform

Ff(ξ) =
∫

Rd

e−ixξf(x) dx.

Theorem 6 ( M.Cwikel [5]). Let α and β be the operators of multiplication
by the functions α(ξ) and β(x). Suppose that β ∈ Lq(Rd), q > 2, and let

[α]qq = sup
t>0

tqmeas{ξ ∈ (Rd : |α(ξ)| > t} <∞.

Then the operator T = βF∗α as (well as the operator αFβ) is in Σp and

[T ]qq ≤ C[α]qq

∫
|β(x)|q dx. (2.9)

Proposition 3 (Birman-Schwinger principle [3], [14]). Let A and V be two
positive self-adjoint operators acting in the same Hilbert space. Suppose that
V is bounded and the operator

√
V (A+ I)−1/2 is compact. Then for E > 0,

the number N(E) of eigenvalues of the operator A − V lying to the left of
−E satisfies the relation

N(E) = n(1,
√
V (A+ E)−1

√
V ).

In applications, A is a differential operator with constant coefficients and
V is the operator of multiplication by a function. Then applying Theorem 6
to the operator T =

√
V (A+I)−1/2 one obtains sharp inequalities for N(E).

6. In order to state the next result we need to introduce one more Neumann-
Schatten class Sp of compact operators. Namely, we say that T ∈ Sp, p ≥ 1,
if

||T ||pp := tr (T ∗T )p/2 =
∑

j

sp
j <∞.

It is easy to see that Sp is a Banach space.
The next theorem gives us a sufficient condition guaranteeing that an

operator of the form β(x)α(i∇) belongs to the class Sp.

Theorem 7. Let α and β be the operators of multiplication by α(ξ) and
β(x). Suppose that α, β ∈ Lp(Rd), where p ≥ 2. Then T = βF∗α ∈ Sp and

||T ||pp ≤ (2π)−d

∫
|α(ξ)|p dξ

∫
|β(x)|p dx. (2.10)

This theorem can be found in [15]. See also [11] and [16].

7. We now formulate a statement about eigenvalue estimates for a certain
operator with constant coefficients perturbed by a potential V . It is one of
the consequences of the inequality (2.9).
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Proposition 4. Let α(ξ) = (|ξ|2 − µ)2, V (x) ≥ 0 and p > 1/2. Suppose
that V ∈ Lp+d/4(Rd) ∩ Lp+1/2(Rd) if d ≥ 2, or V ∈ Lp+1/2(R) if d = 1. Let
N(E) be the number of eigenvalues of the operator α(i∇) − V (x) lying to
the left of the point −E, where E > 0. Then

N(E) ≤ C

Ep

(∫
Rd

V p+d/4dx+ µd/2−1

∫
Rd

V p+1/2dx
)
, if d ≥ 2; (2.11)

N(E) ≤ C

Epµ1/2

∫
Rd

V p+1/2dx, if d = 1. (2.12)

Proof. It is an elementary application of the Cwikel estimate. Indeed,
according to the Birman-Schwinger principle

N(E) = n(1, X),

where X is the compact operator defined by the equality

X =
√
V (α(i∇) + E)−1

√
V .

Let χ be the characteristic function of the ball {|ξ| ∈ Rd : |ξ|2 ≤ µ}. Let us
split X such that X = X1 +X2, where

X1 =
√
V (α(i∇) + E)−1χ(i∇)

√
V .

According to the Ky Fan inequality,

n(1, X) ≤ n(1, 2X1) + n(1, 2X2). (2.13)

Therefore it is sufficient to estimate each term in the right hand side of
(2.13) separately. We begin with the first term. Set q1 = p + d/4. Then
according to (2.9)

n(1, 2X1) ≤ C0

∫
V q1 dx

∫
|ξ|2>µ

dξ

((|ξ|2 − µ)2 + E)q1
≤

≤ C1

∫
V q1 dx

∫ ∞

µ

sd/2−1ds

((s− µ)2 + E)q1
≤ C2

∫
V q1 dx

∫ ∞

0

sd/2−1ds

(s2 + E)q1

=
C

Ep

∫
Rd

V p+d/4 dx.

In order to estimate the second term in (2.13) we set q2 = p + 1/2. Using
(2.9) again we find

n(1, 2X2) ≤ C3

∫
V q2 dx

∫
|ξ|2<µ

dξ

((|ξ|2 − µ)2 + E)q2
≤

≤ C4

∫
V q2 dx

∫ µ

0

sd/2−1ds

((s− µ)2 + E)q2
≤ C5

∫
V q2 dx

∫ ∞

−∞

µd/2−1ds

(s2 + E)q2
=

=
Cµd/2−1

Ep

∫
Rd

V p+1/2 dx,
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which completes the proof of (2.11).
In order to proof (2.12) we note that (|ξ|2−µ)2 = (|ξ|−√µ)2(|ξ|+√µ)2 ≥

(|ξ| − √µ)2µ. Consequently, for any q > 1,∫ ∞

∞

dξ

((ξ2 − µ)2 + E)q
≤

∫ ∞

∞

dξ

((|ξ| − √µ)2µ+ E)q
=

C
√
µEq−1/2

,

where

C =
∫ ∞

−∞

ds

(s2 + 1)q
.

If now q = p+ 1/2, then by using (2.9) we arrive at

N(E) ≤
C

∫
V q dx

√
µEq−1/2

=
C

∫
V p+1/2 dx
√
µEp

,

which means that (2.12) is also proven. �

3. Proof of Theorem 1

The main tool of the proof is the linear fractional mapping that takes
the upper half-plane {z : =z > 0} into the compliment of the unit disk
{z : |z| > 1} given by the formula

z 7→ z + i+ 1
z − i+ 1

.

Insert the operator H = −∆+V instead of z into this formula, i.e. consider
the operator

U = (H + I + i)(H + I − i)−1 = I + 2i(H + I − i)−1.

Obviously z /∈ R is an eigenvalue of the operator H if and only if (z + i +
1)/(z − i+ 1) is an eigenvalue of U . Clearly

U∗ = I − 2i(H∗ + I + i)−1

and therefore

U∗U = I+2i(H+I− i)−1−2i(H∗+I+ i)−1 +4(H∗+I+ i)−1(H+I− i)−1.

Using the Hilbert identity, we obtain

U∗U = I + 2i(H∗ + I + i)−1(H∗ −H)(H + I − i)−1

and since H∗ −H = −iV

U∗U = I + 4(H∗ + I + i)−1=V (H + I − i)−1.

In particular, this implies

U∗U − I ≤ 4Y ∗Y,
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where Y =
√
=V +(H + I − i)−1. By using Corollary 2 the eigenvalues λj

of the operator H satisfy the inequality∑
j

(∣∣∣λj + 1 + i

λj + 1− i

∣∣∣2 − 1
)p

+
≤ tr (U∗U − I)p

+ ≤ 4ptr (Y ∗Y )p = 4p||Y ||2p
2p.

It follows from this inequality that∑
j

( =λj

|λj + 1|2 + 1

)p

+
≤ ||Y ||2p

2p (3.1)

Indeed, denote a = 2=λj/(|λj + 1|2 + 1) and suppose that =λj > 0. Then∣∣∣λj + 1 + i

λj + 1− i

∣∣∣2 − 1 =
(1 + a

1− a

)
− 1 ≥ 2a.

We come to the conclusion that one needs to estimate the norm of the
operator

Y =
√
=V +(H + I − i)−1

in the class S2p. Let us represent this operator in the form

Y =
√
=V +(−∆ + I)−1/2B, where B = (−∆ + I)1/2(H + I − i)−1.

We will show that the operator B is bounded and its norm does not exceed
1. In other words, we will show that

||(−∆ + I)1/2(H + I − i)−1f ||2 ≤ ||f ||2, (3.2)

for all f ∈ L2.
Denote u = (H + I − i)−1f . It is obvious that∫

Rd

(|∇u|2 + (1 + <V (x))|u|2) dx = <
∫

Rd

fū dx.

Due to the condition <V ≥ 0, we obtain from this relation that∫
Rd

(|∇u|2 + |u|2) dx ≤ 1
2

∫
Rd

(|f |2 + |u|2) dx.

The latter inequality can be written in the form∫
Rd

(2|∇u|2 + |u|2) dx ≤
∫

Rd

|f |2 dx.

Replacing 2 by a smaller number we will make the inequality weaker. As a
result we obtain the estimate

||(−∆ + I)1/2u||2 ≤ ||f ||2. (3.3)

It remains to note that (3.3) is equivalent to (3.2).
Let us summarize the results. Since

Y =
√
=V +(H + I − i)−1 =

√
=V +(−∆ + I)−1/2B and ||B|| = 1,
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we obtain

||Y ||2p ≤ ||
√
=V +(−∆ + I)−1/2||2p. (3.4)

On the other side, according to Theorem 7,

||
√
=V +(−∆ + I)−1/2||2p

2p ≤ (2π)−dC0

∫
=V p

+dx,

where C0 =
∫

Rd(ξ2 + 1)−p dξ. Combining (3.4) with (3.1), we complete the
proof of Theorem 1.

4. Proof of Theorem 2

The main arguments in the proof of this result remain the same apart
from the estimate of the norm ||Y ||2p of the operator Y . Recall that∑

j

( =λj

|λj + 1|2 + 1

)p

+
≤ ||Y ||2p

2p, (4.1)

where Y =
√
=V +(H + I − i)−1.

In order to find a bound for the s-numbers of the operator Y we represent
it in the form

Y =
√
=V +(−∆ + I − i)−1(I − V (H + I − i)−1).

In the previous Section we have found that

(H + I − i)−1 = (−∆ + I)−1/2B and ||B|| ≤ 1.

Consequently,

||(H + I − i)−1|| ≤ 1,

and this means that

||Y ||2p ≤ ||
√
=V +(−∆ + I − i)−1||2p(1 + ||V ||∞).

By using Theorem 7 we obtain that for any p > d/4

||
√
=V +(−∆ + I − i)−1||2p

2p ≤ (2π)−dC0

∫
=V p

+dx,

where

C0 =
∫

dξ

((ξ2 + 1)2 + 1)p
.

Consequently,

||Y ||2p
2p ≤ (2π)−d(1 + ||V ||∞)2pC0

∫
=V p

+dx. (4.2)

Consequently (4.1) and (4.2) imply (1.3).
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5. Proof of Theorem 3 and some related results

Proof of Theorem 3. Assume that λj ∈ Πb are enumerated in the order
of decreasing imaginary parts. Note, that the theorem would be proven, if
instead of the infinite sum in the left hand side of (1.5), we estimated a
partial sum

m∑
j=1

|=λj |γ ≤ C|Ψb(W )|
2γ−1
2r−1 (b+ |Ψb(W )|

1
2r−1 ), λj ∈ Πb. (5.1)

On the other hand, it is sufficient to prove the estimate (5.1) for the case
when

V ∈ C∞0 (Rd).

Indeed, if V /∈ C∞0 (Rd) , then we can always find a sequence Vn of C∞0 -
functions that converges to V in Ld/2−1+2r(Rd) ∩ Lr(Rd). Obviously the
corresponding sequence of quantities Ψb(Wn) (here Wn = |Vn|2 +4=Vn) will
converge to Ψb(W ). Moreover, the non-real eigenvalues λj of H will be the
limits of the sequences of non-real eigenvalues λj(n) of Hn = −∆+Vn, which
implies that

∑m
j=1 |=λj |γ = limn→∞

∑m
j=1 |=λj(n)|γ .

Essential role in the proof plays Corollary 1 as well as a trick relating
the eigenvalues of the operator H = −∆ + V and the eigenvalues of the
operator (−∆ + 2i− µ+ V )2, µ > 0, lying to the left of <z = −4. Indeed,
let λj be eigenvalues of the operator −∆+V lying in the hyperbolic domain
Dµ = {z : (=z + 2)2 − (<z − µ)2 ≥ 4, =z > 0}, then (λj − µ + 2i)2 are
eigenvalues of the operator (−∆− µ+ 2i+ V )2, and it is easy to see, that

<(λj − µ+ 2i)2 = (<λj − µ)2 − (=λj + 2)2 ≤ −4, ∀λj ∈ Dµ.

Consequently, due to Corollary 1,
n∑
1

∣∣∣<(λj − µ+ 2i)2 + 4
∣∣∣ ≤ ∣∣∣ n∑

1

sj

∣∣∣, (5.2)

where sj are eigenvalues of the operator

T1 = (−∆− µ)2 + V1(−∆− µ) + (−∆− µ)V1 + V 2
1 − V 2

2 − 4V2

where V1 = <V and V2 = =V are the real and the imaginary parts of the
potential. The inequality (5.2) takes care of all eigenvalues from the domain
Dµ. It turns out that we do not need all of them, but only the eigenvalues
λj lying inside the domain Ωµ = {z : (=z + 1)2 − (<z − µ)2 ≥ 1, =z > 0}.
Note that the boundaries of both domains Dµ and Ωµ touch the real line at
the point z = µ. Note also that Ωµ ⊂ Dµ and therefore this might imply
that bounds on eigenvalues lying in Ωµ are better than those in Dµ.

It turns out that the imaginary parts of eigenvalues in Ωµ can be estimated
in terms of real parts of eigenvalues of the operator (H − µ + 2i)2 + 4. A
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similar trick was used by Davies in [6] to obtain individual inequalities for
the eigenvalues of the operatorH.

Let us study the relation between the spectra of the operators H and
(H − µ+ 2i)2 in more detail. Assume that λj ∈ Ωµ and =λj > s. Then

2(=λj − s) ≤ (=λj + 1)2 − (<λj − µ)2 − 1 + 2(=λj − s)

= (=λj + 2)2 − (<λj − µ)2 − 4− 2s = −<(λj − µ+ 2i)2 − 4− 2s.

Due to Corollary 1 it means that

2
∑

λj∈Ωµ

(=λj − s)+ ≤ tr
(
<(H − µ+ 2i)2 + 4 + 2s

)
−
≤ tr

(
T1 + 2s

)
−
.

Now, we represent the operator T1 in the form

T1 =
1
2
(−∆− µ)2 +

( 1√
2
(−∆− µ) +

√
2V1

)2
− 4V2 − V 2

1 − V 2
2 .

Since the operator ( 1√
2
(−∆− µ) +

√
2V1

)2
≥ 0

is positive, we obtain that the spectrum of the operator T1 can be estimated
by the spectrum of the operator

T2 =
1
2
(−∆− µ)2 − |V |2 − 4V2.

Thus,

2
∑

λj∈Ωµ

(=λj − s)+ ≤ tr
(
T2 + 2s

)
−
. (5.3)

Let τj be negative eigenvalues of T2. In order to estimate the right hand
side of (5.3) we apply Proposition 4 according to which the number N(E)
of eigenvalues of T2 lying to the left of the point −E satisfies the inequality

N(E) ≤ C

Ep

(∫
Rd

W d/4+pdx+ µd/2−1

∫
Rd

W 1/2+pdx
)

(5.4)

with p > 1/2 and d ≥ 2. If now q > p > 1/2 then∑
j

|τj |q = q

∫ ∞

0
Eq−1N(E)dE

≤ C
(∫

Rd

W d/4+pdx+ µd/2−1

∫
Rd

W 1/2+pdx
)
|λ1|q−p.

From (5.4) it follows that the lowest eigenvalue τ1 satisfies the inequality

|τ1|r−1/2 ≤ C
(∫

Rd

W d/4+r−1/2dx+ µd/2−1

∫
Rd

W rdx
)

= CΨµ(W ).
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Hence for q > p > 1/2 and r > 1 we arrive at

∑
j

|τj |q ≤ C
(∫

Rd

W d/4+pdx+ µd/2−1

∫
Rd

W 1/2+pdx
)
|Ψµ(W )|2(q−p)/(2r−1).

Recall that

2
∑

λj∈Ωµ

(=λj − s)+ ≤
∑

j

(τj + 2s)−

and therefore

∑
λj∈Ωµ

(=λj − s)+ ≤ C
(∫

Rd

(W − 2s)d/4+p
+ dx

+ µd/2−1

∫
Rd

(W − 2s)1/2+p
+ dx

)
|Ψµ(W )|

2(1−p)
2r−1 =: F (s, µ) (5.5)

with 1/2 < p < 1 and r > 1.
Let now Πb be the strip {z : 0 < <z < b,=z > 0}. Since the boundary

of Ωµ touches the real line in the parabolically, it is obvious, that for small
values of s < ε0, the set of all points z ∈ Πb whose =z > s > 0 can be
covered by not more than m(b) = [Cb/

√
s]+1 sets of the form Ωµ. Since Ωµ

contains the sector =z > |<z − µ|, we obtain that the number of domains
Ωµ covering the strip Πb can be also estimated by [b/s] + 1 for any s > 0. If
s ≥ ε0 then 1/

√
s ≥ √

ε0/s and therefore without loss of generality one can
assume that

m(b) = [Cb/
√
s] + 1, ∀s > 0.

Since =λj ≤ C|Ψb(W )|
2

2r−1 for any λj ∈ Πb, we obtain

∑
λj∈Πb

(=λj − s)+ ≤
m(b)∑
l=1

∑
λj∈Ωµl

(=λj − s)+ ≤ C
(b+ |Ψb(W )|

1
2r−1 )√

s
F (s, b).

Obviously ∑
λj∈Πb

|=λj |γ = γ(γ − 1)
∑

λj∈Πb

∫ ∞

0
(=λj − s)+sγ−2ds,

which leads to∑
λj∈Πb

|=λj |γ ≤ (b+ |Ψb(W )|
1

2r−1 )C
∫ ∞

0
sγ−5/2F (s, b)ds
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The integral in the right hand side converges only if γ > 3/2 and by using
the notation inyroduced in (5.5) we finally obtain∑

λj∈Πb

|=λj |γ ≤ C|Ψb(W )|
2δ

2r−1 (b+ |Ψb(W )|
1

2r−1 )

×
(∫

Rd

|W |d/4−1/2+γ−δdx+ +bd/2−1

∫
Rd

|W |γ−δdx
)
,

where 0 < δ < 1/2. It remains to set r = γ− δ to complete the proof. �

We have proved inequalities for
∑
|=λj |γ with γ > 3/2. However, (5.5)

allows us to obtain a bound on eigenvalues belonging to Ωµ with γ = 1.

Corollary 3. Let λj be the eigenvalues of the operator −∆+V lying inside
Ωµ = {z : (=z + 1)2 − (<z − µ)2 ≥ 1, =z > 0} and let d ≥ 2. Then∑

j

|=λj | ≤ C
(∫

Rd

W d/4+pdx+ µd/2−1

∫
Rd

W 1/2+pdx
)
||W ||1−p

∞

for any 1/2 < p < 1.

Similarly we can show

Corollary 4. Let d = 1 and let λj be the eigenvalues of the operator
−d2/dx2 + V lying inside Ωµ = {z : (=z + 1)2 − (<z − µ)2 ≥ 1, =z > 0}.
Then ∑

j

|=λj | ≤ C||W ||1−p
∞ µ−1/2

∫
Rd

W 1/2+pdx

for any 1/2 < p < 1.

Unfortunately if d = 1 then in order to obtain similar results we have to
avoid the point z = 0 and in this case we deal with the strip a < <z < b,
a > 0. However, this is no longer true if γ > 7/4. Indeed:

Theorem 8. Let λj be the eigenvalues of the operator H = −d2/dx2 + V

lying inside the semi-infinite strip Πb = {z : 0 < <z < b, =z > 0}. Then for
any γ > 7/4, r ∈ (γ− 1

2 , γ) and V ∈ L∞(Rd) such that W = (|V |2+4=V )+ ∈
Lr−1/4 we have∑

λj∈Πb

|=λj |γ ≤ C||W ||γ−r
∞ (b+ ‖W‖1/2

∞ )
(∫

Rd

|W |r−1/4dx
)
.

Proof. The inequality (5.5) could be easily modified and we can obtain
that for 1/2 < p < 1∑

λj∈Ωµ

(=λj − s) ≤ C
(
µ−1/2

∫
Rd

(W − 2s)1/2+p
+ dx

)
‖W‖1−p

∞ =: F (s, µ), (5.6)
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where ‖W‖1−p
∞ appears when we estimate the lowest eigenvalue λ1 of the

operator T2 = 1
2(−d2/dx2 − µ)2 −W .

Now consider the part of the strip Πb = {z : 0 < <z < b, =z > 0}
satisfying =z > s >. We cover it by sets Ωµ, µ ∈ R+. While doing this,
we avoid the value µ = 0 taking µ as large as possible. The optimal choice
of such µ would be mu = µ0 =

√
s2 + 2s, where µ0 satisfies the equation

(s + 1)2 − µ2
0 = 1. Thus, without loss of generality, we can assume that

µ ≥
√
s2 + 2s.

Arguing as in the proof of Theorem 3, we find that set of all points z ∈ Πb

whose =z > s can be covered by not more than m(b) = [Cb/
√
s] + 1 sets of

the form Ωµ.
Since there is no λj ∈ Πb satisfying =λj > ‖W‖∞, we obtain

∑
λj∈Πb

(=λj − s)+ ≤
m(b)∑
l=1

∑
λj∈Ωµl

(=λj − s)+ ≤ C
b+ ||W ||1/2

∞√
s

F (s, µ0).

Therefore∑
λj∈Πb

|=λj |γ = γ(γ − 1)
∑

λj∈Πb

∫ ∞

0
(=λj − s)+sγ−2ds

≤ (b+ ||W ||1/2
∞ )C

∫ ∞

0
sγ−5/2F (s,

√
s) ds.

The integral in the right hand side converges only if γ > 7/4 and using (5.6)
we arrive at∑

λj∈Πb

|=λj |γ ≤ C||W ||1−p
∞ (b+ ||W ||1/2

∞ )
(∫

Rd

|W |γ−5/4+pdx
)

with 1/2 < p < 1. It remains to set r = γ + p − 1 to complete the proof.
�

6. Proof of Theorem 5

Theorem 5 has been already proved before for d = p = 1 (see[1], [7]).
Consider first the case when p > max{1, d/2}. By using Birman-Schwinger
principle, we find that the value λ /∈ R+ is an eigenvalue of the operator H
if and only if 1 is an eigenvalue of the operator

X = |V |1/2(−∆− λ)−1|V |−1/2V,

and thus ‖X‖ ≥ 1. Note now that

‖X‖ ≤ ‖X‖p ≤ ‖Q‖2
2p

where
Q = |V |1/2| −∆− λ|−1/2.
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Using Theorem 7 we obtain that

1 ≤ ||Q||2p
2p ≤ (2π)−d

∫
Rd

|V |pdx
∫

Rd

dξ

||ξ|2 − λ|p
.

Assuming that p > d/2 there is a constant C such that

J =
∫

Rd

dξ

||ξ|2 − λ|p
= |λ|d/2−p

∫
Rd

dξ

||ξ|2 − eiφ|p
≤ C |λ|d/2−p | sinφ|1−p.

where φ = arg λ and consequently,

J ≤ C |=λ|1−p |λ|d/2−1.

It remains to note that

1 ≤ (2π)−dJ

∫
Rd

|V |pdx.

In order to prove Theorem 5 for p = d/2 > 1 we use just Theorem 6 instead
of Theorem 7. Indeed, let

a(ξ) =
1

||ξ|2 − λ|
and p = d/2 > 1.

Then, using homogeneity, we obtain

[a]pp = [a0]pp, where a0 =
1

|ξ2 − eiφ|
.

There is a constant C > 0 such that

[a]pp = [a0]pp ≤ C| sinφ|1−p = C
∣∣∣=λ
λ

∣∣∣1−p
.

It remains to note that, if λ is an eigenvalue of H, then

1 ≤ C[a]pp

∫
Rd

|V |pdx p = d/2.

The proof is complete. �

7. Individual eigenvalue estimates

Let us now consider a Schrödinger operatorH = −∆+iV (x) whose poten-
tial is pure imaginary. Besides we assume that V ≥ 0 and lim|x|→∞ V (x) =
0.

Our first statement concerns the case d = 3.

Theorem 9. Let V ∈ L1(R3), V ≥ 0 and let z = k2 /∈ R+ be an eigenvalue
of H = −∆ + iV (x). Then

< k
4π

∫
R3

V (x) dx ≥ 1. (7.1)
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In particular, this shows that if
∫

R3 V dx is small, then the real part of
the square root of the eigenvalue of H is large. That implies that non-real
eigenvalues of −∆ + itV escape any compact subset of C, as t → 0. It
does not necessary imply that the eigenvalues tend to infinity as t → 0,
because they might simply reach the positive real semi-axis for some t > 0
(see Theorem 15).

Proof of Theorem 9. By using the Birman-Schwinger principle we find
that z = k2 6∈ R+ is an eigenvalue of the operator H = −∆ + iV if and only
if the operator

X = −i
√
V (−∆− z)−1

√
V (7.2)

has an eigenvalue 1.
Suppose that = z > 0. Then the real part of the operator X is positive

and, consequently, the spectrum of this operator lies in the right half plane.
Therefore if z is an eigenvalue of H, then∑

j

< ζj ≥ 1,

where ζj are eigenvalues of X. On the other side,∑
j

< ζj ≤ tr<X =
∫

R3

τ(x, x) dx,

where τ(x, y) is the integral kernel of the operator <X.
Since the kernel of the operator (−∆− z)−1 equals

g(x, y) =
eik|x−y|

4π|x− y|
,

we obtain that the kernel of the operator =(−∆− z)−1 equals

g0(x, y) = (2i)−1(g(x, y)− g(y, x))

whose diagonal values are

g0(x, x) =
k + k̄

8π
=
<k
4π
.

Finally

tr<X =
∫

R3

V (x) g0(x, x) dx =
< k
4π

∫
R3

V (x) dx

implies (7.1). �

Corollary 5. Let d = 3 and let V ∈ L1(R3) be a positive function. Then
non-real eigenvalues of −∆ + iV do not accumulate to zero.

Using the same approach we obtain the following two results in dimensions
d = 1 and d = 2.
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Theorem 10. Let d = 1, z = k2 6∈ R+ be an eigenvalue of the operator
H = −∆ + iV , V ≥ 0, V ∈ L1(R). Then

<k
2|k|2

∫
R
V (x) dx ≥ 1,

which means that k lies inside the circle of radius 4−1
∫
V (x) dx with the

centre at 4−1
∫

R V (x) dx.

It is interesting to observe that if d = 2then the eigenvalues do not appear
at all if the integral of V is small.

Theorem 11. Let d = 2, z /∈ R+ be an eigenvalue of H = −∆+ iV , V ≥ 0,
V ∈ L1(R2). Then

1
2

(π
2

+ arctan(< z/= z)
) ∫

V (x) dx ≥ 1.

In particular, the spectrum of H is real if
π

2

∫
V (x) dx < 1.

Proof. In order to prove this statement we just notice that if X is the
Birman-Schwinger operator (7.2) defined in the proof of Theorem 9, then

tr<X =
∫
V (x) dx

∫
R2

=
[ 1
2π(|ξ|2 − z)

]
dξ.

�

The next result deals with some properties of complex eigenvalues of
Schrödinger operators in higher dimensions d ≥ 4.

Theorem 12. Let d ≥ 4 and let z /∈ R+ be an eigenvalue of H = −∆ + iV

with V ≥ 0. Then

(2π)−d+1ωd−1

∣∣∣<z + 2‖V ‖∞
∣∣∣(d−2)/2

∫
V (x) dx ≥ 2, (7.3)

where ωd−1 is the area of the unit sphere Sd−1.

Proof. If as before X is the Birman-Schwinger operator introduced in
(7.2) and z is an eigenvalue of the operator H, then 1/2 is an eigenvalue of
the operator X − 1/2. Consequently,

tr (<X − 1/2)+ ≥ 1/2. (7.4)

Indeed, for the eigenvalues λj of the operator X we have∑
(<λj − 1/2)+ ≤ tr (<X − 1/2)+.

Therefore the eigenvalue sum in the left hand side is not less than 1/2.
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Obviously,

(<X − 1/2)+ ≤
(
<X − V

2||V ||∞

)
+

=
√
V

(
=(−∆− z)−1 − 1

2||V ||∞

)
+

√
V .

Concequently, using (7.4) we have

1/2 ≤ (2π)−d

∫
Rd

V (x) dx
∫

Rd

( = z
(|ξ|2 −<z)2 + (=z)2

− 1
2‖V ‖∞

)
+
dξ.

The integration in the last integral is carried out over the domain where

|ξ|2 ≤ < z +
√

(2‖V ‖ − = z)+=z ≤ < z + 2‖V ‖∞.

Therefore

ω−1
d−1

∫
Rd

( = z
(|ξ|2 −< z)2 + (= z)2

− 1
2‖V ‖∞

)
+
dξ

≤ 2−1π
∣∣∣< z + 2‖V ‖∞

∣∣∣(d−2)/2
. (7.5)

and we obtain (7.3). �

We now obtain some results involving Lp norms of potentials with p > 1.

Theorem 13. Let d ≥ 3 and let V ≥ 0. Suppose that z /∈ R is an eigenvalue
of H = −∆ + iV . Then there are positive constants C1 and C2 depending
only on d and γ ≥ 0 such that

|=z|γ ≤
(
C1 + C2(

<z
=z

)d/2−1
) ∫

V d/2+γ dx. (7.6)

Proof. Let as before

X = −i
√
V (−∆− z)−1

√
V .

If z is an eigenvalue ofH, then there is at least one eigenvalue of the operator
<X that is not less than 1. If by sj we denote the eigenvalues of the operator
<X, then this implies

sup
s>0

s−(d/2+γ) card{j : sj > s} ≥ 1.

This supremum is related to the norm in the weak Neumann-Schatten class
Σd/2+γ and, due to Theorem 6, it can be estimated by∫

V d/2+γdx

∫
Rd

( =z
(ξ2 −<z)2 + =z2

)d/2+γ
dξ. (7.7)
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We conclude the proof by estimating the latter integral∫
Rd

( =z
(ξ2 −<z)2 + =z2

)d/2+γ
dξ

≤ C

∫ ∞

−∞

( =z
s2 + =z2

)d/2+γ
sd/2−1ds+ C

∫ ∞

−∞

( =z
s2 + =z2

)d/2+γ
|<z|d/2−1ds

≤
(
C1 + C2

∣∣∣<z=z ∣∣∣d/2−1)
|=z|−γ .

�

Applying this result for the case γ = 0 we obtain:

Corollary 6. Let d ≥ 3 and let C1 be the constant in (7.6). If C1

∫
V d/2dx <

1, then the eigenvalues of −∆ + iV belong to the conical sector {z : 0 ≤
arg z ≤ α}, where α satisfies the equation

(C1 + C2( cotα)d/2−1)
∫
V d/2dx = 1.

If γ > 0 then in the proof of Theorem 13 one can apply Theorem 6 even
if d = 2 and obtain

Theorem 14. Let d = 2 and let V ≥ 0. Suppose that z /∈ R is an eigenvalue
of H = −∆ + iV . Then there is a positive constant C depending only on
γ > 0 such that

|=z|γ ≤ C

∫
V 1+γdx, γ > 0.

8. Additional remarks

Concluding this paper, we mention two rather obvious facts, that are valid
for an arbitrary complex potential V . For the sake of simplicity, we restrict
our study to the case d = 3. As before, H = −∆ + V is the Schrödinger
operator and ω2 is the area of the unit sphere S2.

Theorem 15. Let d = 3. If V ∈ L∞ ∩ L1 and let ω2 ‖V ‖∞ + 2‖V ‖1 < 8π.
Then the spectrum of the operator H is real.
The same statement is true if

sup
x

∫
R3

|V (y)|
|x− y|

dy < 4π.

Theorem 16. Let d = 3 and let z = k2 /∈ R+ be an eigenvalue of the oper-
ator H = −∆ + V , =k > 0. Then there is a positive constant C depending
only on γ > 0, such that

(=k)2γ ≤ C

∫
R3

|V |3/2+γdx.
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Proof of both theorems. Suppose that z = k2 is an eigenvalue of the
operator H. Then the norm of the operator X = |V |1/2(−∆− z)−1|V |1/2 is
not smaller then 1. By Schur’s inequality if G is an integral operator with
the kernel g(x, y) then

‖G‖ ≤ m1m2, (8.1)

where

m1 = sup
x

∫
|g(x, y)| dy

ρ(x, y)
and m2 = sup

y

∫
|g(x, y)|ρ(x, y) dx

and ρ is a positive weight. Since the kernel of the operator X equals

|V (x)|1/2 eik|x−y|

4π|x− y|
|V (y)|1/2,

then applying (8.1) with the weight ρ =
√
V (x)/V (y), we obtain that

||X|| ≤ 1
4π

sup
x

∫
e−=k|x−y|

|x− y|
|V (y)| dy.

The statement of Theorem 15 follows from the trivial estimate

1 ≤ ‖X‖ ≤ 1
4π

sup
x

∫
R3

|V (y)|
|x− y|

dy ≤ 1
8π

(ω2‖V ‖∞ + 2‖V ‖1).

We obtain the statement of Theorem 16 using the Hölder inequality

1 ≤ 1
4π

∫
R3

|V (y)|
|x− y|

e−=k|x−y|dy

≤ C0||V ||p
(∫

R3

e−q=k|y|

|y|q
dy

)1/q
= C

||V ||p
(=k)2γ/p

,

where p = 3/2 + γ and q = p/(p− 1). �

Remark. By using similar arguments one can show that∣∣∣ √z=
√
z

∣∣∣γ+1/2
|=
√
z|2γ ≤ C

∫
R
|V |1/2+γdx, γ ≥ 1/2,

for eigenvalues z /∈ R+ of the one-dimensional Schrödinger operator H =
−d2/dx2 +V . The constant C in this inequality can be computed explicitly

C =
1
2

(2γ − 1
2γ + 1

)γ−1/2
.
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