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Hardy inequalities for simply connected planar domains
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To Mikhail Shlëmovich Birman on his 80-th birthday

Abstract. In 1986 A. Ancona showed, using the Koebe one-quarter Theorem,

that for a simply-connected planar domain the constant in the Hardy inequality

with the distance to the boundary is greater than or equal to 1/16. In this
paper we consider classes of domains for which there is a stronger version of

the Koebe Theorem. This implies better estimates for the constant appearing

in the Hardy inequality.

1. Main result and discussion

Let Ω be a domain in R2 and let Ωc = R2 \ Ω be its complement. It is known
that there exists a number r = r(Ω) > 0 such that for any function u ∈ C1

0(Ω) we
have:

(1.1)
∫

Ω

|∇u|2dx ≥ r2
∫

Ω

|u|2

δ(x)2
dx, δ(x) = inf

y∈Ωc
|y − x|,

e.g. E.B. Davies [4], [5], [6] and V.G. Maz’ya [10]. For convex domains r = 1/2
and it is sharp, see e.g. [4]. However, the sharp constant for non-convex domains is
unknown, although for arbitrary planar simply-connected domains A. Ancona [1]
proved (1.1) with r = 1/4. Some specific examples of non-convex domains were
considered in [6] (see also J. Tidblom [12]). For example, it was found that if
Ω = R2 \ R+, R+ = [0,∞), then r2 = 0.20538....

Our objective is to obtain the Hardy inequality for simply-connected non-
convex domains Ω ⊂ R2, whose degree of non-convexity can be ”quantified”. We
introduce two possible ”measures” of non-convexity.

Let Λ ⊂ C be a simply-connected domain such that 0 ⊂ ∂Λ. Denote by
Λ(w, φ) = eiφΛ + w the transformation of Λ by rotation by angle φ ∈ (−π, π]
in the positive direction and translation by w ∈ C:

(1.2) Λ(w, φ) = {z ∈ C : e−iφ(z − w) ∈ Λ}.
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Denote by Kθ ⊂ C, θ ∈ [0, π] the sector

(1.3) Kθ = {z ∈ C : | arg z| < θ}.
In words, this is an open sector symmetric with respect to the real axis, with the
angle 2θ at the vertex. Here and below we always assume that arg ζ ∈ (−π, π] for
all ζ ∈ C. Our first assumption on the domain Ω is the following

Condition 1.1. There exists a number θ ∈ [0, π] such that for each w ∈ Ωc

one can find a φ = φw ∈ (−π, π] such that

Ω ⊂ Kθ(w, φw).

Very loosely speaking, this means that the domain Ω satisfies the exterior cone
condition. The difference is of course that the cone is now supposed to be infinite.
Because of this, Condition 1.1 is equivalent to itself if stated for the boundary points
w ∈ ∂Ω only.

Note also that if Condition 1.1 is satisfied for some θ, then automatically θ ≥
π/2, and the equality θ = π/2 holds for convex domains.

Theorem 1.2. Suppose that the domain Ω ⊂ R2,Ω 6= R2 satisfies Condition
1.1 with some θ ∈ [π/2, π]. Then for any u ∈ C1

0(Ω) the Hardy inequality (1.1)
holds with

(1.4) r =
π

4θ
.

It is clear that the constant r runs from 1/4 to 1/2 when θ varies from π to
π/2. For the domain Ω = Kθ Theorem 1.2 does not give the best known result,
found in [6], saying that the value of r remains equal to 1/2 for the range θ ∈ [0, θ0]
where θ0 ≈ 2.428, which is considerably greater than π/2.

To describe another way to characterize the non-convexity, for a > 0 and
θ ∈ [0, π), introduce the domains

(1.5) D̃a = {z ∈ C : |z| > a & | arg z| 6= π}, Da,θ = D̃a(−aeiθ, 0).

The domain D̃a is the exterior of the disk of radius a centered at the origin with
an infinite cut along the negative real semi-axis.

Condition 1.3. There exist numbers a > 0 and θ0 ∈ [0, π) such that for any
w ∈ ∂Ω one can find a φ = φw ∈ (−π, π] and θ ∈ [−θ0, θ0] such that

Ω ⊂ Da,θ(w, φw).

Note that any domain satisfying Conditions 1.1 or 1.3, is automatically simply-
connected.

The following Theorem applies to the domains with a finite in-radius

δin = sup
z∈Ω

δ(z).

Theorem 1.4. Let Ω ⊂ R2, Ω 6= R2 be a domain such that δ in <∞. Suppose
that Ω satisfies Condition 1.3 with some θ0 ∈ [0, π) and that

(1.6) 2δin ≤ R0(a), R0(a) =
a

2(21/2| tan(θ0/2)|+ 1)
.

Then the Hardy inequality (1.1) holds with

(1.7) r =
1
2

[
1− 2δin

R0(a)

]
.
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A natural example of a domain to apply the above theorem, is the following
horseshoe-shaped domain

Λ = {z ∈ C : ρ < |z| < ρ+ δ, | arg z| < ψ, Re z > ρ cosψ}, ψ ∈ (0, π),

with ρ, δ > 0. Simple geometric considerations show that this domain satisfies
Condition 1.3 with a = ρ and

θ0 =

{
0, ψ ≤ π/2,
2ψ − π, ψ > π/2.

Assuming that δρ−1 is small, so that δin = δ, we deduce from Theorem 1.4 that
the Hardy inequality holds with a constant r, which gets close to 1/2 as δρ−1 → 0.
On the other hand, if δinρ−1 is large, one could apply Theorem 1.2, noticing that Λ
satisfies Condition 1.1 with θ = (π + ψ)/2, which gives the Hardy inequality with
constant

r =
1

2
(
1 + ψπ−1

) .
which is obviously independent of δin or ρ.

Let us mention briefly some other recent results for convex domains, concerning
the Hardy inequality with a remainder term. In the paper [3] H.Brezis and M.
Marcus showed that if Ω ∈ Rd, d ≥ 2, then the inequality could be improved to
include the L2-norm:

(1.8)
∫

Ω

|∇u|2dx ≥ 1
4

∫
Ω

|u|2

δ(x)2
+ C(Ω)

∫
Ω

|u|2dx,

where the constant C(Ω) > 0 depends on the diameter of Ω. They also conjectured
that C(Ω) should depend on the Lebesgue measure of Ω. This conjecture was
justified in [9] and later generalised to Lp-type inequalities in [11]. Later S. Filippas,
V.G. Maz’ya and A. Tertikas [8] (see also F.G. Avkhadiev [1]) obtained for C(Ω)
an estimate in terms of the in-radius δin.

2. A version of the Koebe Theorem

A. Ancona has pointed out in [1] (page 278) that the Hardy inequality for
simply-connected planar domains can be obtained from the famous Koebe one-
quarter Theorem. Let f be a conformal mapping (i.e. analytic univalent) defined
on the unit disk D = {z ∈ C : |z| < 1}, normalized by the condition f(0) = 0,
f ′(0) = 1. Denote by Ω the image of the disk under the function f , i.e. Ω = f(D),
and set

δ(ζ) = dist{ζ, ∂Ω} = inf
w/∈Ω

|w − ζ|

to be the distance from the point ζ ∈ Ω to the boundary ∂Ω. The classical Koebe
one-quarter Theorem tells us that

δ(0) ≥ r,

with r = 1/4. On the other hand, if the domain Ω is convex, then it is known
that r = 1/2, see e.g. P.L.Duren [7], Theorem 2.15. Without the normalization
conditions f(0) = 0, f ′(0) = 1 the above estimate can be rewritten as follows:

(2.1) δ(f(0)) ≥ r|f ′(0)|.
For any simply-connected domain Ω ⊂ C, Ω 6= C we denote by A(Ω) the class of
all conformal maps such that f(D) = Ω.
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Our proof of the main Theorems 1.2 and 1.4 relies on a version of the Koebe
theorem, in which the constant r assumes values in the interval [1/4, 1/2]. We
begin with a general statement which deduces the required Koebe-type result by
comparing the domain Ω with some suitable ”reference” domain. Let Λ ⊂ C,Λ 6= C
be a simply-connected domain such that 0 ⊂ ∂Λ, and let g be a conformal function
which maps Λ onto the complex plane with a cut along the negative semi-axis, i.e.
onto

Π = C \ {z ∈ C : Im z = 0,Re z ≤ 0},
such that g(0) = 0. We call Λ a standard domain and g - a conformal map associated
with the standard domain Λ.

Lemma 2.1. Let w ∈ ∂Ω and suppose that for some standard domain Λ the
inclusion

(2.2) Ω ⊂ Λ(w, φ)

holds with some φ ∈ (−π, π]. Let g be a conformal map associated with Λ,
(i) Suppose that there are numbers M > 0 and R0 > 0 such that for all

R ∈ (0, R0]

(2.3)
∣∣∣∣g′(z)g(z)

∣∣∣∣ ≥ β

|z|
for z : 0 < |z| ≤ R, z ∈ Λ with some β = β(R) ∈ (0,M ]. Then for any
f ∈ A(Ω) satisfying the condition M |f ′(0)| ≤ 4R0, the inequality

(2.4) |f(0)− w| ≥ β(R1)
4

|f ′(0)|, R1 =
M |f ′(0)|

4
,

holds.
(ii) Suppose that the bound (2.3) holds for all z ∈ Λ with some positive function

β = β(z). Then the inequality

(2.5) |f(0)− w| ≥ 1
4

inf
z∈Λ

β(z)|f ′(0)|,

holds.

Proof. Since Ω ⊂ Λ(w, φ), the function

h(z) = g
(
e−iφ(f(z)− w)

)
is conformal on D, with values in Π. Since 0 /∈ Π, by the classical Koebe Theorem,

|h(0)| ≥ 1
4
|h′(0)|,

so that

(2.6) |g
(
e−iφ(f(0)− w)

)
| ≥ 1

4
|g′

(
e−iφ(f(0)− w)

)
||f ′(0)|.

Suppose that the conditions of part (i) are fulfilled. If |f(0) − w| ≥ M |f ′(0)|/4,
then there is nothing to prove, so we assume that |f(0) − w| ≤ M |f ′(0)|/4. Then
by the assumption (2.3) we get

1
β
(
M |f ′(0)|/4

) |f(0)− w| ≥ 1
4
|f ′(0)|,

which leads to the required estimate (2.4).
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If the conditions of part (ii) are fulfilled, then (2.5) follows directly from (2.6)
and (2.3).

�

Corollary 2.2. Let Ω ⊂ C be a domain. Suppose that for any w ∈ ∂Ω
there is a standard domain Λ = Λw, such that the inclusion (2.2) holds with some
φ = φw ∈ (−π, π]. Let g = gw be the conformal map associated with Λw.

(i) Suppose that gw satisfies (2.3) for all 0 < |z| ≤ R, z ∈ Λw, for all R ∈
(0, R0] with some β(R) = βw(R) ∈ (0,M ], where M > 0 and R0 > 0
are independent of w. Then under the condition Mδin ≤ R0 the estimate
(2.1) holds for all f ∈ A(Ω) with

r =
1
4

inf
w∈∂Ω

βw(R′), R′ = Mδin.

(ii) Suppose that gw satisfies (2.3) for all z ∈ Λw with some β(z) = βw(z) > 0.
Then the estimate (2.1) holds for all f ∈ A(Ω) with

r =
1
4

inf
w∈∂Ω

inf
z∈Λw

βw(z).

Observe that under the conditions of this corollary, the domain Ω is automati-
cally simply-connected and Ω 6= C.

Proof. (i) By the classical Koebe Theorem |f ′(0)| ≤ 4δ(f(0)) ≤ 4δin, so that
under conditionMδin ≤ R0 Lemma 2.1(i) entails the estimate (2.4) for each w ∈ ∂Ω.
Since R1 ≤ R′ and βw( · ) is a decreasing function, the required result follows.

Part (ii) immediately follows from Lemma 2.1(ii). �

Now we apply the above results in the cases of standard domains Kθ and Da,θ,
see (1.3) and (1.5) for definitions.

Theorem 2.3. Suppose that Ω satisfies Condition 1.1 with some θ ∈ [π/2, π].
Then for any f ∈ A(Ω) the inequality (2.1) holds with r given by (1.4).

Proof. Due to Condition 1.3, for each w ∈ ∂Ω we have Ω ⊂ Kθ(w, φ) with
some φ ∈ (−π, π]. Clearly, the domain Kθ is standard and the function

g(z) = zα, α =
π

θ

is a conformal map associated with Kθ. One immediately obtains:

g′(z)
g(z)

= α
zα−1

zα
=
α

z
, z ∈ Λ,

so that the conditions of Corollary 2.2(ii) hold with the constant β = α. Now
Corollary 2.2(ii) leads to the proclaimed result. �

Note that for convex domains the angle θ is π/2, and hence we recover the
known result r = 1/2. Actually, the proof of Lemma 2.1 is modelled on that for
convex domains, which is featured in [7], Theorem 2.15.

Let us prove a similar result for Condition 1.3:

Theorem 2.4. Suppose that Ω satisfies Condition 1.3 with some a > 0, θ0 ∈
[0, π), that δin <∞, and that the condition (1.6) is fulfilled. Then for any f ∈ A(Ω)
the inequality (2.1) holds with r given by (1.7).
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Proof. Due to Condition 1.3, for each w ∈ ∂Ω we have Ω ⊂ Da,θ(w, φ) with
some θ ∈ [0, θ0] and φ ∈ (−π, π]. Clearly, the domain Da,θ is standard and the
function

g(z) = h2(za−1), h(ζ) =
√
ζ + eiθ − 1√

ζ + eiθ
− 2ib, b = sin

θ

2
,

is a conformal map associated with Da,θ. Write:

h(ζ) =
ζ + eiθ − 1− 2ib

√
ζ + eiθ√

ζ + eiθ

=
ζ + 2ibeiθ/2 − 2ib

√
ζ + eiθ√

ζ + eiθ

=
ψ(ζ)√
ζ + eiθ

.

A direct calculation shows that
g′(z)
g(z)

=
2ψ′(z/a)
aψ(z/a)

− 1
z + aeiθ

.

Let us investigate the function ψ in more detail. Assume that |ζ| ≤ 1/2. Rewrite:

ψ(ζ) = ζ + 2ibeiθ/2 − 2ibeiθ/2
√

1 + ζe−iθ

= ζ + 2ibeiθ/2 − 2ibeiθ/2

(
1 +

1
2
ζe−iθ + ζγ1

)

= (1− ibe−iθ/2)ζ − 2ibeiθ/2ζγ1 = e−iθ/2 cos
θ

2
ζ − 2ibeiθ/2ζγ1,

where
|γ1(ζ)| ≤ 2−3/2|ζ|, |ζ| ≤ 1/2.

Let’s look at the derivative:

ψ′(ζ) = 1− ib√
ζ + eiθ

= 1− e−iθ/2 ib√
1 + ζe−iθ

= 1− ibe−iθ/2(1 + γ2)

= e−iθ/2 cos
θ

2
− ibe−iθ/2γ2,

where
|γ2(ζ)| ≤ 21/2|ζ|, |ζ| ≤ 1/2.

Therefore

g′(z)
g(z)

=
2e−iθ/2 cos θ

2 − 2ibe−iθ/2γ2(z/a)
e−iθ/2 cos θ

2 z − 2ibeiθ/2zγ1(z/a)
− 1
z + aeiθ

=
1
z

[
2− 2i tan(θ/2)γ2(z/a)

1− 2i tan(θ/2)eiθγ1(z/a)
− z

a

1
z/a+ eiθ

]
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Denote ζ = z/a, t = | tan(θ/2)|. Using the above bounds on γ1, γ2, we obtain for
|ζ| ≤ 1/2 the inequality ∣∣∣∣g′(z)g(z)

∣∣∣∣ ≥ 2
|z|

[
1− t|γ2(ζ)|
1 + 2t|γ1(ζ)|

− |ζ|
]

≥ 2
|z|

[
1− 21/2t|ζ|
1 + 2−1/2t|ζ|

− |ζ|
]
.

Remembering the simple inequality
1− a

1 + b
≥ 1− a− b,

satisfied for all non-negative a and b, from here we deduce that∣∣∣∣g′(z)g(z)

∣∣∣∣ ≥ 2
|z|

[
1−

(
23/2| tan(θ/2)|+ 1

) |z|
a

]
, |z|/a ≤ 1/2.

Therefore the condition (2.3) is satisfied for all 0 < |z| ≤ R, where

R ≤ min
{
a

2
,

a

23/2| tan(θ/2)|+ 1

}
.

In any case, (2.3) is satisfied for

R ≤ R0(a, θ) =
a

23/2| tan(θ/2)|+ 2
,

with

β(R) = β(R, θ) = 2
[
1− R

R0(a, θ)

]
.

Note that β ≤ M with M = 2 and β(R, θ) ≥ β(R, θ0), so that by Corollary 2.2(i)
the estimate (2.1) holds with the r given by (1.7). �

3. Proof of Theorems 1.2, 1.4

As soon as the Koebe Theorem (2.1) is established, our proof of the Hardy
inequality follows that by A.Ancona [1]. Namely, our starting point is the inequal-
ity for the half-plane, which is an immediate consequence of the classical Hardy
inequality in one dimension. Below we use the usual notation z = x+ iy, x, y ∈ R.

Proposition 3.1. Let C+ = {z ∈ C : Re z > 0}. For any u ∈ C1
0(C+) one has∫

C+

|∇u|2dxdy ≥ 1
4

∫
C+

|u|2

x2
dxdy.

Theorems 1.2 and 1.4 immediately follow from Proposition 3.1 with the help
of the following conditional result:

Theorem 3.2. Let Ω ⊂ C, Ω 6= C be a simply connected domain. Suppose that
for all g ∈ A(Ω) the inequality (2.1) holds with some r ∈ [1/4, 1/2]. Then for any
conformal mapping f : C+ → Ω the following version of the Koebe Theorem holds:

(3.1) δ(f(z)) ≥ 2rx|f ′(z)|.

For r = 1/4 the estimate (3.1) can be found in [1]. For the reader’s convenience
we provide a proof of (3.1).
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Proof. For a conformal mapping f : C+ → Ω and arbitrary z ∈ C+ we define

g(w) = gz(w) = f
(
h(w)

)
, h(w) =

zw + z

1− w
,

where w ∈ D. It is clear that for each fixed z ∈ C+ the function h maps D onto C+

and h(0) = z, g(0) = f(z). The derivative is

g′(w) =
z + z

(1− w)2
f ′

(
h(w)

)
,

so that
g′(0) = 2xf ′(z).

Therefore, the Koebe theorem (2.1) implies that

δ
(
f(z)

)
= δ

(
g(0)

)
≥ r|g′(0)| = 2rx|f ′(z)|,

as required. �

Proof of Theorems 1.2, 1.4. According to Theorems 2.3 or 2.4 the Koebe
Theorem for functions f ∈ A(Ω) holds with the values of r given by (1.4) or (1.7)
respectively.

Let f : C+ → Ω be a conformal map. Remembering that conformal maps
preserve the Dirichlet integral, from Proposition 3.1 we get for any u ∈ C1

0(Ω)∫
Ω

|∇u|2dx =
∫

C+

|∇(u ◦ f)|2dxdy ≥ 1
4

∫
C+

|(u ◦ f)|2

x2
dx

= r2
∫

C+

|(u ◦ f)|2

(2rx)2|f ′(z)|2
|f ′(z)|2dx ≥ r2

∫
Ω

|u|2

δ(x)2
dx.

At the last step we have used (3.1).
Now Theorems 1.2, 1.4 follow. �
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