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Spectral inequalities for Partial Differential Equations and
their applications.

Ari Laptev

1. Discrete Negative Spectrum of Schrödinger operators

1.1. Lieb-Thirring inequalities. Let us consider a self-adjoint Schrödinger
operator in L2(Rd)

(1.1) H = −∆ + V,

where V is a real-valued function. If the potential function V decays rapidly
enough and, for example, smooth, then the spectrum of the operator H typically is
absolutely continuous on [0,∞). If V has a non-trivial negative part, then H might
have finite or infinite number of negative eigenvalues {λn(H)}. In case the number
of negative eigenvalues is infinite, the point zero is the only possible accumulating
point. The inequalities

(1.2)
∑

n

|λn| ≤ Rγ,d

(2π)d

∫∫

R2d
(|ξ|2 + V (x))γ− dξdx ≤ Lγ,d

∫

Rd

V
γ+ d

2
− dx

are known as Lieb-Thirring bounds. Here and in the following, V± = (|V | ± V )/2
denote the positive and negative parts of the function V .

It is known that the inequality (1.2) holds true with some finite constants if and
only if γ ≥ 1/2, d = 1; γ > 0, d = 2 and γ ≥ 0, d ≥ 3. There are examples showing
that (1.2) fails for 0 ≤ γ < 1/2, d = 1 and γ = 0, d = 2.

Almost all the cases except for γ = 1/2, d = 1 and γ = 0, d ≥ 3 were justified in
the original paper of E.H.Lieb and W.Thirring [LT]. The critical case γ = 0, d ≥ 3
is known as the Cwikel-Lieb-Rozenblum inequality, see [Cw, L1, Roz1] and also
later proved in [LY, Con]. The remaining case γ = 1/2, d = 1 was verified by
T.Weidl in [W1].

1.2. Weyl’s asymptotics. Inequalities (1.2) play a crucial role in establishing
Weyl’s asymptotic formulae for the negative eigenvalues of the Schrödinger operator
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−∆ + αV when the coupling constant α → ∞. Namely

(1.3) lim
α→+∞

α−γ− d
2

∑

n

|λn(α)|

= lim
α→+∞

α−γ− d
2

∫∫

Rd×Rd

(|ξ|2 + αV )γ−
dxdξ

(2π)d

= Lcl
γ,d

∫

Rd

V
γ+ d

2
− dx ,

where the so-called “classical constants” Lcl
γ,d are defined by

(1.4) Lcl
γ,d = (2π)−d

∫

Rd

(|ξ|2 − 1)γ− dξ =
Γ(γ + 1)

2dπd/2Γ(γ + d
2 + 1)

, γ ≥ 0 .

Usually such formulae are obtained for a class of smooth potentials with compact
supports. One of the major applications of the inequalities (1.2) is that they allow
one to close the class of smooth compactly supported potentials in Lγ+d/2(Rd) and
obtain Weyl’s asymptotics (1.3) for arbitrary potentials providing that the right
hand side in (1.3) is finite, see [BirS].

Clearly the asymptotic formula (1.3) immediately implies Lcl
γ,d ≤ Lγ,d. However,

the finiteness of the constants Lcl
γ,d does not imply the finiteness of the constants

Lγ,d. For example, it has been showen in [BirL] (see also [LN]) that if d = 2 and
γ = 0, then the condition V ∈ L1(R2) does not guarantee (1.3). Moreover, it might
happen that for the number of negative eigenvalues N(αV ) of the operator H the
asymptotics is of “Weyl’s order” but the coefficient is not classical, namely,

lim
α→+∞

α−1N(αV ) =
1

4π

∫

R2

V−(x) dx + β

with some β > 0.

1.3. Sharp values of the constants Lγ,1, γ ≥ 3/2. The sharp values of
Lγ,d are known for γ ≥ 3/2, d = 1, (see [LT, AizL]), where they coincide with
Lcl
γ,d. For γ = 3/2 and d = 1 this fact follows from one of the so-called Buslaev-

Faddeev-Zakharov trace formulae [FaZ] (see also [BF]) .
Assume that V is a smooth function such that supp V ∈ (−c, c) for some c > 0 and
let us consider the equation

Hu(x, k) = − d2

dx2
u(x, k) + V (x)u(x, k) = k2u(x, k)

where Im k ≥ 0 and u satisfies the conditions

u(x, k) =

{
eikx, x > c

a(k)eikx + b(k)e−ikx, x < −c.

The Wronskian W [u, ū] is constant if k ∈ R and comparing its values for x > c and
x < −c we immediately find the magic formula

|a(k)|2 − |b(k)|2 = 1,

which, in particular, implies that |a(k)| ≥ 1 for all k ∈ R.
The negative eigenvalues {λn = λn(V )} of the operator H can be parameterised by
(iκn)2, where κn > 0. Assuming that u(x, iκn) ∈ L2(R) is an eigenfunction of the
operator H, we immediately obtain that this is possible if and only if the scattering
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coefficient a(iκn) = 0 and thus the eigenvalues of H are identified with zeros of
a(k) in upper complex plane.

In [FaZ] the authors have obtained infinite number of trace formulae relating the
discrete spectrum of H, the scattering coefficient a and the values of integrals of
the potential function V and its derivatives. The first three such formulae are given
by

−
∑

n

κn +
1

2π

∫ ∞

−∞
log |a(k)| dk =

1

4

∫ ∞

−∞
V (x) dx,

(1.5)
∑

n

κ3
n +

3

2π

∫ ∞

−∞
k2 log |a(k)| dk =

3

16

∫ ∞

−∞
V 2(x) dx,

−
∑

n

κ5
n +

5

2π

∫ ∞

−∞
k4 log |a(k)| dk =

5

32

∫ ∞

−∞
V 3(x) dx +

5

64

∫ ∞

−∞
(V ′(x))2 dx.

Let now consider (1.5). By using the variational principle and the fact that
|a(k)| ≥ 1 on the real line we obtain

∑

n

|λn(V )|3/2 ≤
∑

n

|λn(−V−)|3/2 =
∑

n

(κn(−V−))3 ≤ 3

16

∫ ∞

−∞
(V−(x))2 dx.

It remains to notice that the constant Lcl
3/2,1 appearing in (1.3) coincides with 3/16.

If γ > 3/2 we use an idea suggested by Aizenman and Lieb [AizL].
Denote by B(p, q) the classical Beta function

B(p, q) =

∫ 1

0
(1 − t)q−1tp−1 dt.

Then

∑

n

|λn(V )|γ =
1

B(γ − 3/2, 5/2)

∑

n

∫ ∞

0
(|λn(V )| − t)3/2

+ tγ−3/2−1 dt

=
1

B(γ − 3/2, 5/2)

∑

n

∫ ∞

0
(|λn(V + t)|)3/2 tγ−3/2−1 dt

≤ 1

B(γ − 3/2, 5/2)
Lcl

3/2,1

∫ ∞

−∞

∫ ∞

0
((V (x) + t)−)2tγ−3/2−1 dtdx

=
B(γ − 3/2, 3)

B(γ − 3/2, 5/2)
Lcl

3/2,1

∫ ∞

−∞
(V−(x))γ+1/2 dx

= Lcl
γ,1

∫ ∞

−∞
(V−(x))γ+1/2 dx.

1.4. Sharp values of the constants L1/2,1. Hundertmark, Lieb and Thomas
have shown in [HLT] that the sharp value of L1/2,1 is equal to 1/2 which is twice
the classical constant Lcl

1/2,1 = 1/4. Then by applying the argument described above

we find that Lγ,1 = 2Lcl
γ,1, for 1/2 ≤ γ < 3/2.

Conjecture. In their paper [LT] Lieb and Thirring have conjectured that L1,d =
Lcl

1,d for d ≥ 3. This conjecture is still open.

Note that B.Helffer and D.Robert [HR1, HR2] have proved that the constant
Lγ,d > Lcl

γ,d for γ < 1.
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1.5. Sharp values of the constants Lγ,d, γ ≥ 3/2 and d > 1. In [LW1]
A.Laptev and T.Weidl were able to obtain that

∑

n

|λn| ≤ Lcl
γ,d

∫

Rd

V γ+d/2
− dx

for any γ ≥ 3/2 and d ≥ 1, see the next Section.

Remark 1. The sharp values of the constants Lγ,1 for 1/2 < γ < 3/2; Lγ,2,
0 < γ < 3/2 and Lγ,d, 0 ≤ γ < 3/2, d ≥ 0 are unknown.

1.6. Bounds for special classed of potentials. For a class of potentials
equal characteristic functions of sets of finite measure improved constants in CLR
inequalities were obtained in [Lap3]. For example, it is proved that for this class

of potential L0,3 ≤
√

3
2π2 0.0877. This is better than Lieb’s bound which is about

0.1156. It is interesting that the constant 0.0877 is only slightly exceeds the constant
appearing from the imbedded Sobolev theorem which for d = 3 equals 0.0780 . . . .

2. Matrix-valued potentials

2.1. Sharp inequalities in higher dimensions. In [LW1] A.Laptev and
T.Weidl extended trace formulae for scalar Schrödinger operators to Schrödinger
operators with Hermitian martix-valued potentials. Let

HU(x, k) = − d2

dx2
U(x, k) + V (x)U(x, k) = k2U(x, k),

where V is a smooth m×m Hermitian martix-valued function such that supp V ⊂
(−c, c), c > 0. We choose U such that

U(x, k) =

{
I eikx, x > c

A(k)eikx + B(k)e−ikx, x < −c.

Here I is the identity m×m-matrix and A and B are “scattering” m×m-matrices
which are defined for Im k ≥ 0. If U∗ is the matrix adjoint to U , then the Wronskian
W [U, U∗] is independent of the variable x and we obtain that

AA∗ − BB∗ = I,

which, in particular, implies det |A| ≥ 1. Moreover, in [LW1] the authors established
that ∑

n

mnκ
3
n +

3

2π

∫ ∞

−∞
k2 log det |A(k)| dk =

3

16

∫ ∞

−∞
Tr V 2(x) dx,

where κn are eigenvalues of the operator H and mn are their multiplicities. Thus if
we count the eigenvalues {λn} of the operator H together with their multiplicities
then ∑

n

|λn|3/2 =
∑

n

mnκ
3
n ≤ Lcl

3/2,1

∫ ∞

−∞
TrV 2

−(x) dx.

(Note that this inequality was also obtained later in the paper of R.Benguria and
M.Loss [BL].)
Applying the Aizenman-Lieb argument we find that for any γ ≥ 3/2

∑

n

|λn|γ ≤ Lcl
γ,1

∫ ∞

−∞
Tr V γ+1/2

− (x) dx.
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Finally by using the so-called “lifting argument with respect to dimensions” we are
able to obtain sharp Lieb-Thirring inequalities for γ ≥ 3/2 and d ≥ 1. Indeed, let
x = (x1, x2, . . . , xd) ∈ Rd and let us denote by ∆′ the Laplacian with respect to
x′ = (x2, . . . , xd). Then

(2.1)
∑

n

|λn(−∆ + V )|γ =
∑

n

|λn(−∂2
x1

−∆′ + V )|γ

≤
∑

n

|λn(−∂2
x1

+ (−∆′ + V )−)|γ

≤ Lcl
γ,1

∫ ∞

−∞
Tr (−∆′ + V )γ+1/2

− dx1.

Using this trick d times we arrive at

∑

n

|λn(−∆ + V )|γ ≤
(
Πd−1

l=0 Lcl
γ+l/2,1

) ∫

Rd

V γ+d/2
− dx = Lcl

γ,d

∫

Rd

V γ+d/2
− dx.

2.2. Improved inequalities in higher dimensions for 1/2 ≤ γ < 3/2. In
[HLW] the authors were able to extend the sharp result of the D.Hundertmark,
E.H.Lieb and L.E.Thomas [HLT] for γ = 1/2 to matrix-valued potentials. Then
using “lifting argument with respect to dimensions” one immediately obtains

Lγ,d ≤2Lcl
γ,d for all 1 ≤γ< 3/2 , d ∈N ,(2.2)

Lγ,d ≤2Lcl
γ,d for all 1/2 ≤γ< 3/2 , d = 1 ,(2.3)

Lγ,d ≤4Lcl
γ,d for all 1/2 ≤γ < 1 , d ≥ 2 .(2.4)

For the important case γ = 1, d = 3 we have L1,3 ≤ 2Lcl
1,3 < 0.013509 compared

with L1,3 < 5.96677Lcl
1,3 < 0.040303 obtained in [L2] and its improvement L1,3 <

5.21803Lcl
1,3 < 0.035246 obtained in [BlSt].

Note also that inequalities (2.2) - (2.4) on the constant Lγ,d imply that L1,d ≤
2Lcl

1,d < Lcl
0,d as was conjectured in [Rue].

The same arguments as in [LW1] yield the inequalities (2.2) - (2.4) for Schrödinger
operators with magnetic fields.

2.3. Further improved bounds for 1 ≤ γ < 3/2. Recently the estimates
for the constant Lγ,d, for 1 ≤ γ < 3/2 were improved in the paper of Dolbeault,
Laptev and Loss [DLL], where the authors found that

(2.5) Lγ,d ≤ R Lcl
γ,d,

where

R :=
2

3
√

3
×
(

2

3π

)−1

= 1.8138 . . . .

At the moment the estimate (2.5) is the best known for the values of γ from the
interval 1 ≤ γ < 3/2. The authors used the approach of A. Eden and C. Foias [EF]
who have obtained Lieb-Thirring inequalities via generalised Sobolev inequalities
for a system of orthonormal functions. For γ = 1 such an approach is equivalent to
Lieb-Thirring bounds for Schrödinger operators, see for the proof [LT].
In [DLL] the 1D approach of Eden and Foias was developed for orthonormal
system of vector-functions and thus allowed us to obtain improved constants
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for Schrödinger operators with matrix-valued potentials. With already developed
technique from [LW1] this implies improved constants for all d ≥ 1 and 1 ≤ γ <
3/2.

2.4. Improved bounds for γ = 0. The best constant L0,3, which is close to
the optimal one, was obtained in [L1] by using the Feynman-Kac formula and
Jensens inequality (see also [RS]). Using Cwikel’s method D.Hundertmark [H]
has proved the CLR inequality for matrix-valued potentials and thus by using the
“lifting” arguments from [LW1] improve Lieb’s bound for large d’s.
Later the CLR inequality for matrix-valued potentials were obtained in [FLS] with
better constants by using the original method of E.H.Lieb [L1].

3. Some other recent results related to Lieb-Thirring bounds

3.1. Monotonicity of eigenvalue moments by J.Stubbe. Let, as in
Subsection 1.2, λn(α) be the negative eigenvalues of the operator H(α) = −∆+αV .
It has been proved by J. Stubbe in [St] that if V ≤ 0 then the mapping

(3.1) α → α−(2+d/2)
∑

n

|λn|2

is non decreasing for all α > 0 and thus for all α

α−(2+d/2)
∑

n

|λn(α)|2 ≤ Lcl
2,d

∫

Rd

|V (x)|2+d/2 dx.

Letting α = 1 we obtain sharp Lieb-Therring inequalities for γ = 2 and therefore
for any γ ≥ 2 and for any d ≥ 1.

Remark 2. The monotonicity property of the mapping (3.1) is an interesting
fact which unfortunately is not true for γ < 2, see [St].

3.2. Harmonic oscillator. Let H = −∆+
∑d

k=1 ω
2
kx2

k, x = (x1, x2, . . . , xd) ∈
Rd. It has been shown in [DeB] and [Lap3] that for the eigenvalues {λn}∞n=1 of
the the operator H we have

∑

n

(λ− λk)+ ≤ 1

(2π)d

∫

Rd

(
λ−

d∑

k=1

ω2
kx2

k

)

+
dx.

This inequality could be interpreted as a Lieb-Thirring inequality for the negative
eigenvalues for the Schrödinger operator with the potential

V =
d∑

k=1

ω2
kx2

k − λ

an it gives a class of examples of Schrödinger operators for which the Lieb-Thirring
conjecture is justified.
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3.3. Lieb-Thirring inequalities for Magnetic operators. The lifting ar-
gument with respect to dimensioned described in Section 2 allows one to state that
all the results concerning Lieb-Thirring inequalities given in Section 2 for the op-
erator −∆ + V hold true even for the magnetic operators (i∇ + A)2 + V , where
the vector-potential A ∈ L2

loc(R2). This is a corollary of the lifting argument with
respect to dimension. Indeed, at every step we can gauge away the vector potential
when arguing as in (2.1).

Let now {λn(B)} be eigenvalues of a Schrödinger operator with constant magnetic
field in R2

HB =
(
i

∂

∂x1
+

Bx2

2

)2
+
(
i

∂

∂x2
− Bx1

2

)2
+ V (x), x = (x1, x2).

Recently R. Frank and R. Olofsson [FO] have proved that if B > 0 then

(3.2)
∑

n

|λn(B)| ≤ 3
B

2π

∞∑

m=0

∫

R2

((2m + 1)B + V (x))− dx.

It is easy to see that

B

2π

∞∑

m=0

∫

R2

((2m + 1)B + V (x))− dx ≤ 1

(2π)2

∫

R2

(|ξ|2 + V (x))− dξdx.

Therefore, although the constant 3 appearing in the right hand side of (3.2) is not
as good as the constant R = 1.8138... which appears in (2.5), this bound contains a
much more relevant information related to the magnetic structure of the operator
HB.

3.4. CLR inequalities for Schrödinger operators with Aharonov-
Bohm magnetic field. Let us consider in L2(R2) the operator Hβ

(3.3) Hβ = (i∇ + Aβ)2 + V (x),

where V (x) = V (|x|) and

Aβ = β
( x2

|x|2 ,− x1

|x|

)
, β ∈ (0, 1).

It has been shown by A.A. Balinsky, W.D. Evans and R.T. Lewis in [BEL] that
there is a constant C = C(β) > 0 such that for the number of the negative
eigenvalues N(Hβ) the operator (3.3) the following CLR inequality holds

(3.4) N(Hβ) ≤ C

∫

R2

V−(x) dx.

Here we shall give a prove of this bound with the optimal constant. Indeed, since V
depends only on |x|, then by using polar coordinates we obtain that the quadratic
form of the operator Hβ equals

∫

S

∫ ∞

0

(
|∂ru|2 +

(k − β)2

r2
|u|2 + V (r)|u|2

)
r drdθ, k = 0, ±1, ±2, . . . .

Substituting r = et, v(t, θ) = u(et, θ) we arrive to the quadratic form
∫

S

∫ ∞

−∞

(
|∂tv|2 + (n − β)2|v|2 + Ṽ (t)|v|2

)
dtdθ,
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where Ṽ (t) = V (et) e2t. Let {−νn} be the negative eigenvalues of the 1D
Schrödinger operator whose quadratic form equals

∫ ∞

−∞
(|v′(t)|2 + Ṽ (t)|v(t)|2) dt.

Then for the number of the negative eigenvalues below zero of the operator Hβ we
have

(3.5) N(Hβ) = #{k, n : −νn + (k − β)2 < 0, k ∈ Z, n ∈ N}

≤ R(β)
∑

n

ν1/2
n ,

where

R(β) = sup
k

{
ν−1/2 ·

(
#{k : −ν + (k − β)2 < 0, k ∈ Z}

)}
.

Using the sharp inequality of Hundertmark-Lieb-Thomas [HLT] we obtain

∑

n

ν1/2
n ≤ 1

2

∫ ∞

−∞
Ṽ (t) dt =

1

4π

∫

R2

V (x) dx.

By using the latter inequality together with (3.5) we finally obtain

N(Hβ) ≤ R(β)

4π

∫

R2

V (x) dx.

Note that since k = 0 ∈ Z we have R(β) → ∞ if β → 0 or β → 1.

Remark 3. Concluding this Section we would like to mention a recent result
of M.Rumin [Rum] who was able to find a new interesting way of proving Lieb-
Thirring inequalities.

4. Applications of Lieb-Thirring inequalities

Lieb-Thirring inequalities have a large number of applications. Here we present
some of them.

1. In their celebrated paper [LT] E.H.Lieb and W.Thirring obtained inequalities
(1.2) in order to apply them for problems of stability of matter, see the recent
excellent book [LS]. The most important case for physics is the case γ = 1, d = 3,
where the sharp value of the constant L1,3 is still unknown but any improvement
of its bound is of great importance for Quantum Mechanics.

2. Typically the properties of the continuous spectrum of Schrödinger operators
depend on the properties of the discrete spectrum. The negative part of potentials
drags from the positive spectral semi-axis the discrete spectrum destroying its
absolute continuity. In the most transparent way this has been shown for 1D
Schrödinger operators in the paper of P.Deift and R.Killip [DK], where the authors
proved that perturbation by potentials V ∈ L2(R) essentially preserve the absolute
continuity of the spectral interval (0,∞). The corresponding conjecture of B.Simon
[S1] which he suggested for multi-dimensional Schrödinger operators still remains
open.

3. Lieb-Thirring inequalities proved to be very useful when estimating dimensions
of attractors in theory of Navier-Stokes equations, see [L4].
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4. Recently one more applications has been made. The best bound on the value
of the constant L1,3 has been used in the paper of P.T. Nam [N] for finding new
bounds on the maximum ionization of atoms. Such bounds improve the result of
E.H.Lieb [L3] in the fermionic case.

5. One more application was given in the paper of E.H. Lieb [L5], where the author
considered bounds for the Riesz and Bessel potentials of orthonormal functions.

5. Dirichlet and Neumann boundary value problems

5.1. Weyl’s asymptotics and Pólya’s conjecture. Let Ω ∈ Rd, d ≥ 1, be
an open domain of finite Lebesgue measure, |Ω| < ∞. Denote by 0 < λ1 < λ2 ≤ . . .
and 0 = µ1 < µ2 ≤ . . . respectively the eigenvalues of the Dirichlet and Neumann
boundary value problem for the Laplace operator in L2(Ω)

(5.1) −∆Du = λu, u|∂Ω = 0.

(5.2) −∆N u = µ u,
∂u

∂n

∣∣∣
∂Ω

= 0.

Let T be an operator with discrete spectrum {λn = λn(T )}∞n=1, λn → ∞, as
n → ∞, and let N(λ, T ) be its counting function of the spectrum

N(λ, T ) = #{n : λn(T ) < λ}.

The study of the counting functions of the Dirichlet and Neumann eigenvalues has
a rich history. It was conjectures by H.Weyl [Weyl] that

(5.3) N(λ,−∆D) = Lcl
0,d |Ω|λd/2 − 1

4
Lcl

0,d−1 |∂Ω|λ(d−1)/2 + o(λ(d−1)/2),

as λ → ∞, and respectively

(5.4) N(µ,−∆N ) = Lcl
0,d |Ω| µd/2 +

1

4
Lcl

0,d−1 |∂Ω| µ(d−1)/2 + o(µ(d−1)/2),

as µ → ∞. Here we denote by |∂Ω| the (d − 1)-Lebesgue measure of the boundary
of the domain Ω.

Important contributions in proving these formulae were made by Courant and
Hilbert [CH], and later by L.Hörmander [Ho], H.Dustermaat and V.Guillemin
[DG], R.Melrose [Melr], Yu.Safarov and D.Vassiliev [SV] and many others. Finally
Weyl’s conjecture has been proved by V.Ivrii in [Ivr] under some assumption on the
measure of points generating closed billiards in Ω and smoothness of the boundary
∂Ω.

Note that (5.3) and (5.4) imply the asymptotic formula for the so-called Riesz
means of the eigenvalues

(5.5)
∑

n

(λ− λn)γ+ = Lcl
γ,d |Ω|λγ+d/2 − 1

4
Lcl
γ,d−1 |∂Ω|λγ+(d−1)/2

+ o(λγ+(d−1)/2), λ → ∞,

(5.6)
∑

n

(µ − µn)γ+ = Lcl
γ,d |Ω| µγ+d/2 +

1

4
Lcl
γ,d−1 |∂Ω| µγ+(d−1)/2

+ o(µγ+(d−1)/2), µ → ∞,
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where γ ≥ 0 and where if γ = 0 the left hand sides of (5.5) and (5.6) coincide with
the values of N(λ,−∆D) and N(µ,−∆N ) respectively.

In 1961 G. Pólya [P] made a natural conjecture that there is the following uniform
estimate for the counting function of the Dirichlet Laplacian in domains Ω of finite
Lebesgue measure

(5.7) N(λ,−∆D) ≤ λd/2Lcl
0,d |Ω|, λ > 0.

He proved it for the class of tiling domains, namely such domains whose infinite
number of copies can fill the whole space Rd without any gaps by using translations
and rotation.
Remarkably this conjecture still remains open even for such a simple domain as the
disc {x ∈ R2 : |x| < 1}, where the eigenvalues of the Dirichlet Laplacians could be
calculated via the roots of Bessel functions.

The only progress in proving Pólya’s conjecture has been made in [Lap1], where it
has been noticed that if Ω = Ω1×Ω2 ⊂ Rd1 ×Rd2 , where d1+d2 = d, d1 ≥ 2, d2 ≥ 1
and the operator of the Dirichlet boundary problem in L2(Ω1) satisfies the Pólya
conjecture and Ω2 is an arbitrary domain whose d2-Lebesgue measure is finite, then

N(λ,−∆D) ≤ λd/2 Lcl
0,d, |Ω|, λ > 0,

or equivalently,

λk ≥ (Lcl
0,d |Ω|)−2/d k2/d, k ∈ N.

5.2. Easier problems, Berezin-Li-Yau inequalities.
There are two somewhat easier problems related to the Pólya conjecture.
The first one concerns the prove of (5.7) for arbitrary domains of finite measure
with some constant which could be larger than Lcl

0,d. Solving such a problem allows
one to obtain the main term in the Weyl asymptotics for arbitrary domains of finite
measure without any assumption on the smoothness of the boundary.

For bounded domains such a result was proved independently by Z.Ciesielski [C] and
M.Sh.Birman and M.Z.Solomyak [BirS]. For arbitrary domains of finite Lebesgue
measure this result is due to G.Rozenblum [Roz2] and E.H.Lieb [L1], see also
[Met].

Another easier problem concerns inequalities for regularised traces, namely, inequal-
ities for the Riesz means of the eigenvalues

(5.8)
∑

n

(λ− λn)γ+ ≤ Lγ,d λ
γ+d/2|Ω|, λ > 0,

where γ ≥ 0. It is easy to show that if in (5.8) for some γ0 ≥ 0 we have Lγ0,d = Lcl
γ0,d,

then Lγ,d = Lcl
γ,d for any γ > γ0.

P. Li and S.-T. Yau have proved in [LY] that for any k ∈ N

(5.9)
k∑

n=1

λn ≥ d

d + 2
(Lcl

0,d |Ω|)−2/d k
d+2

d = (Lcl
1,d |Ω|)−2/d k

d+2
d ,

where the constant (Lcl
1,d)

−2/d in the right hand side of (5.9) is sharp.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SPECTRAL INEQUALITIES FOR PDE’S AND THEIR APPLICATIONS. 639

Using a similar approach P.Kröger [K] has obtained the sharp upper bound on the
Neumann eigenvalues

(5.10)
k∑

n=1

µn ≤ (Lcl
1,d |Ω|)−2/d k

d+2
d , ∀k ∈ N.

It has been pointed out in [LW2] that by using the Legendre transform such
inequalities are equivalent to the inequalities essentially obtained by F.Berezin in
[Ber]

(5.11)
∑

n

(λ− λn)+ ≤ Lcl
1,d λ

1+d/2|Ω|, λ > 0

and

(5.12)
∑

n

(µ − µn)+ ≥ Lcl
1,d µ1+d/2|Ω|, µ > 0.

By using (5.11) and (5.12) one can always “go down” and obtain bounds for the
Riesz means with 0 ≤ γ < 1, see [Lap1]. However, usually one is not able to keep
sharp constants. In particular, (5.11) and (5.12) imply a bound for the number of
the eigenvalues with the best currently known constants

(5.13) N(λ,−∆D) ≤ λd/2Lcl
0,d

(
1 +

2

d

)d/2
|Ω|

and

(5.14) N(µ,−∆N ) ≥ µd/2Lcl
0,d

2

d + 2
|Ω|.

‘Going up” in γ is a lot better. Indeed, for example the bound (5.11) implies bounds
for higher moment without loosing the sharpness of the constants. Namely,

(5.15)
∑

n

(λ− λn)γ+ ≤ Lcl
γ,d λ

γ+d/2|Ω|, λ > 0, γ ≥ 1.

Remark 4. The bounds (5.15) could be interpreted as Lieb-Thirring inequali-
ties for the number of negative eigenvalues of Schrödinger operators with a class of
barrier type potentials

Vλ(x) =

{
−λ, x ∈ Ω,

+∞ x ,∈ Ω.

5.3. Two terms inequalities for the Riesz means of the eigenvalues
of Dirichlet Laplacians.
Recently, several improvements of the inequality (5.15) have been found. Initially
they have been obtained for the discrete Laplace operator, see [FLU]. The first
result for the continuous Laplacian is due to Melas [Mel]. From his work follows
that

(5.16)
∑

n

(λ− λn)γ+ ≤ Lcl
γ,d |Ω|

(
λ− Md

|Ω|
I(Ω)

)γ+d/2

+
, λ > 0 , γ ≥ 1 ,

where Md is a constant depending only on the dimension and I(Ω) denotes the
second moment of Ω, see also [Ilyin, Yol] for further generalisations. One should
mention, however, that these corrections do not capture the correct order in λ from
the second term of Weyl’s asymptotics.
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In the case γ ≥ 3/2 it is known, [W2], that one can strengthen (5.15) for any
open set Ω ⊂ Rd with a negative remainder term reflecting the correct order
in λ in comparison to the second term of (5.3). However, since one can increase
|∂Ω| without changing the individual eigenvalues λk significantly, a direct analog
of the first two terms of the asymptotics (5.3) cannot yield a uniform bound on
the eigenvalue means. Therefore any uniform improvement of (5.15) without any
further conditions on Ω must invoke other geometric quantities.

The main result from [W2] states that the remainder term involves certain pro-
jections on d − 1-dimensional hyperplanes. In [GW] a universal improvement of
(5.15) has been found. It holds for γ ≥ 3/2 with a correction term of correct order
depending only on the volume of Ω.

5.4. Most recent bounds with two terms.
In the recent paper [GLW] the authors obtain a number of results for the values
γ ≥ 3/2. Here is one of them: let Ω ⊂ Rd be a bounded, convex domain with
smooth boundary and assume that the curvature of ∂Ω is bounded from above by
1/R. Then for all λ > 0

∑

n

(λ− λn)γ+ ≤ Lcl
γ,d |Ω|λγ+d/2

− Lcl
γ,d 2−d−2 |∂Ω|λγ+(d−1)/2

∫ 1

0

(
1 − d − 1

4R
√
λ

s
)

+
ds.

The proof of this bound involves a one dimensional sharp inequality for the
eigenvalues of the operator −d2/dx2 with Dirichlet boundary conditions on the
interval (0, l). Obviously the eigenvalues of this operator are equal to j2π2/l2, j =
1, 2, 3 . . . . The authors show that

∑

j

(
λ− j2π2

l2

)

+
≤ Lcl

1,1

∫ l

0

(
λ− 1

4δ2(t)

)
dt,

where δ(t) = min{t, l − t}. It is interesting that this inequality is sharp and it
involves the term 1/4δ2 which usually appears in Hardy’s inequalities.

5.5. Spectral inequalities for Dirichlet Laplacians with constant mag-
netic field. Let H0,B the Dirichlet Laplacian with constant magnetic field acting
in L2(Ω), where Ω ⊂ R2 is a domain of finite Lebesgue measure,

(5.17) H0,B =
(
i

∂

∂x1
+

Bx2

2

)2
+
(
i

∂

∂x2
− Bx1

2

)2
.

Let {λn(B)}∞n=1 be the eigenvalues of H0,B . It has been proved in [ELV] that these
eigenvalues satisfy the Berezin-Li-Yau inequality with γ ≥ 1

∑

n

(λ− λn(B))γ+ ≤ 1

(2π)2
|Ω|

∫

R2

(λ− |ξ|)γ+ dξ, λ > 0.

In the paper by R.Frank, M.Loss and T.Weidl [FLW] this result has been extended
to 0 ≤ γ < 1

(5.18)
∑

n

(λ− λn(B))γ+ ≤ Rγ Lcl
γ,2 λ

γ+1.
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where

Rγ = 2
( γ

γ + 1

)γ
, 0 < γ < 1,

and R0 = 2. The authors proved that the constants Rγ > 1, 0 ≤ γ < 1, are sharp
and cannot be made smaller even for tiling domains. Moreover, the authors were
able to find further improvement of the inequality (5.18) taking into account the
values of the Landau levels

∑

n

(λ− λn(B))γ+ ≤ B

2π
|Ω|

∞∑

k=0

(λ− B(2k + 1))γ ,

where it is assumed that 00 = 0.
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