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We study functional and spectral properties of perturbations of the operator
�(@s + i a)2 in L2(S1). This operator appears when considering the restriction to the
unit circle of a two-dimensional Schrödinger operator with the Bohm-Aharonov vec-
tor potential. We prove a Hardy-type inequality onR2 and, on S1, a sharp interpolation
inequality and a sharp Keller-Lieb-Thirring inequality. Published by AIP Publishing.
https://doi.org/10.1063/1.5022121

I. INTRODUCTION

On the two-dimensional Euclidean space R2, let us introduce the polar coordinates (r, #) 2⇥
0, +1� ⇥ S1 of x 2R2 and consider a magnetic potential a in a transversal gauge, or Poincaré

gauge,1 so that (a, er) = 0 and (a, e#) = a#(r, #), where (er, e#) is the oriented orthogonal basis
associated with the polar coordinates such that, for any x 2R2 \ {0}, er = x/r, r = |x|. With this
notation, the energy sR2 |(ir + a) |2 dx corresponding to the magnetic Schrödinger operator �

a

can be rewritten as ⌅ +1

0

⌅ ⇡

�⇡

 
|@r |2 +

1
r2
| @# + i r a#  |2

!
r d# dr.

One of the main motivations is the study of Bohm-Aharonov magnetic fields2,3 with a#(r, #) = a/r for
some constant a 2R. We recall that Stokes’ formula applied to the magnetic field b = curl a shows
that the magnetic flux is given by

⌅

|x |<r
b dx=

1
2⇡

⌅ ⇡

�⇡
a#(r, #) r d#= a .

The main result concerning Bohm-Aharonov magnetic fields is, for an arbitrary non-negative function
' in Lq(S1), q 2 (1, +1), the Hardy-type inequality

⌅

R2
|(ir + a) |2 dx � ⌧

⌅

R2

'(x/|x|)
|x|2 | |2 dx (1)

which holds for some constant ⌧ depending on k'kLq(S1). A precise statement will be given in
Corollary II.3.

The proof relies on a method4 developed recently and uses a Keller-Lieb-Thirring inequality for
the first eigenvalue of a magnetic Schrödinger operator on a magnetic ring (see Corollary II.2). This
spectral estimate is equivalent to sharp interpolation inequalities for a magnetic Laplacian on the
circle and has been inspired by a series of previous papers5–7 on interpolation inequalities and their
spectral counterparts. Let us mention that some semiclassical properties of the spectrum of magnetic
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rings were recently studied including an electric potential that admits a double symmetric well8 (also
see earlier references therein). Our results are not limited to the semi-classical regime.

II. MAIN RESULTS

On (�⇡, ⇡]⇡ S1, let us consider the uniform probability measure d� = ds/(2⇡) and denote by
k kLp(S1) the corresponding Lp norm, for any p � 1. Assume that a :R!R is a 2⇡-periodic function
such that its restriction to (�⇡, ⇡]⇡ S1 is in L1(S1) and define the subspace

XaB
(
 2Cper(R) :  0 + i a 2 L2(S1)

)
of the space Cper(R) of the continuous 2⇡-periodic functions on R. The change of function

 (s) 7! ei s s
�⇡ (a(s)�ā)d�  (s) ,

where āB s ⇡�⇡ a(s) d� is the magnetic flux, reduces the problem to the case of a constant: in the sequel
of this paper we shall always assume that

a is a constant function.

Replacing  by s 7! eiks  (s) for any k 2Z shows that µa,p(↵) = µk+a,p(↵) so that we can restrict the
problem to a 2 [0, 1]. By considering �(s)= e�is  (s), we find

| 0 + i a |2 = | �0 + i (1 � a) � |2 = �� 0 � i a ��2 ,

and thus µa,p(↵) = µ1 a,p(↵): it is thus enough to consider the case a 2 [0, 1/2].
Using a Fourier series  (s)=

P
k2Z  k eiks, we obtain that

k 0 + i a k2
L2(S1)

=
X

k2Z
(a + k)2 | k |2 � a2 k k2

L2(S1)
,

so that 7! k 0 + i a k2
L2(S1)

+↵ k k2
L2(S1)

is coercive for any ↵ > a2. Moreover, the optimal constant
µa,p(↵) in the interpolation inequality

k 0 + i a k2
L2(S1)

+ ↵ k k2
L2(S1)

� µa,p(↵) k k2
Lp(S1)

(2)

written for any  2 Xa is an increasing concave function of ↵ > a2 characterized by

µa,p(↵)B inf
 2Xa\{0}

s ⇡�⇡(| 0 + i a |2 + ↵ | |2) d�

k k2
Lp(S1)

(3)

and7 lim↵!� a2 µa,p(↵)= 0. We know that the equality in (2) is realized if either p = + 19 or
p = 2.10 Our first result is the extension of this interpolation result to the case p 2 (2, +1).

Theorem II.1. For any p > 2, a 2R, and ↵ > a2, the infimum in (3) is achieved and

(i) if a 2 [0, 1/2] and a2 (p + 2) + ↵ (p 2)  1, then µa,p(↵) = a2 + ↵ and the equality in (2) is
achieved only by the constant functions,

(ii) if a 2 [0, 1/2] and a2 (p + 2) + ↵ (p 2) > 1, then µa,p(↵) < a2 + ↵ and the equality in (2) is
not achieved by the constant functions.

Moreover, for any ↵ > a2, a 7! µa,p(↵) is monotone increasing on (0, 1/2).

More can be said on µa,p(↵): see Theorem III.7. The region a2 (p + 2) + ↵ (p 2) < 1 is exactly
the set where the constant functions are linearly stable critical points. See Figs. 1 and 2.

With the results of Theorem II.1 in hand, we study some spectral properties of the magnetic
Schrödinger operator Ha ' on the unit circle S1 ⇡ (�⇡, ⇡] 3 s, where ' is a potential and Ha is the
magnetic Laplacian given by

Ha (s)=
 
� d

ds
+ i a

!2

 (s) .



051504-3 Dolbeault et al. J. Math. Phys. 59, 051504 (2018)

The presence of a non-trivial magnetic field a in Ha “lifts” the spectrum up and the final result
substantially depends on its value. Note that Lieb-Thirring inequalities with magnetic field,9 in
particular, imply an inequality for the first eigenvalue. However, it is not known if the constant is
sharp. A somewhat similar result where the lifting of the spectrum is provided by a constant magnetic
field was proved with different methods.7

The first spectral consequence of Theorem II.1 is a Keller-Lieb-Thirring inequality for the first
eigenvalue �1(Ha ') of the Schrödinger operator Ha '. The function ↵ 7! µa,p(↵) is mono-
tone increasing, concave, and therefore has an inverse, denoted by ↵a,p :R+! (�a2, +1), which is
monotone increasing and convex.

Corollary II.2. Let p > 2, a 2 [0, 1/2], and q = p/(p 2) and assume that ' is a non-negative
function in Lq(S1). Then

�1(Ha � ') � � ↵a,p(k'kLq(S1)). (4)

If 4 a2 + µ (p 2)  1, then ↵a,p(µ) = µ a2; if 4 a2 + µ (p 2) > 1, then ↵a,p(µ) > µ a2.
These estimates are optimal in the sense that there exists a non-negative function ' such that

�1(Ha�')=� ↵a,p

⇣
k'kLq(S1)

⌘
. If 4 a2 + µ (p 2)  1, then the equality in (4) is achieved by constant

potentials.

The second application of Theorem II.1 is related to a Hardy inequality in R2. Let us consider
the Bohm-Aharonov vector potential

a(x)= a

 
x2

|x|2 ,
�x1

|x|2
!
, x= (x1, x2) 2R2 , a 2R ,

and recall the inequality3

⌅

R2
|(ir + a) |2 dx �min

k2Z
(a � k)2

⌅

R2

| |2
|x|2 dx . (5)

Using interpolation inequalities,5 the following version4 of Hardy’s inequality in the case d � 3 was
proved: ⌅

Rd
|r |2 dx � ⌧

⌅

Rd

'(x/|x|)
|x|2 | |2 dx ,

where the constant ⌧ depends on the value of k'kLq(Sd�1). Using similar arguments we are now able
to prove the following result.

Corollary II.3. Let p > 2, a 2 [0, 1/2], and q = p/(p 2) and assume that ' is a non-negative
function in Lq(S1). Then inequality (1) holds with ⌧ > 0 being the unique solution of the equation

↵a,p(⌧ k'kLq(S1))= 0 .

Moreover, ⌧ = a2/k'kLq(S1) if 4 a2 + k'kLq(S1) (p � 2)  1.

Notice that for any a 2 (0, 1/2), by taking ' constant, small enough in order that 4 a2

+ k'kLq(S1) (p � 2)  1, we recover the inequality
⌅

R2
|(ir + a) |2 dx � a2

⌅

R2

| |2
|x|2 dx ,

which is equivalent to (5). The case a = 1/2 is obtained by a limiting procedure, and for arbitrary
values of a 2R, we refer to the observations of Sec. III.

III. PROOF OF THEOREM II.1 AND FURTHER RESULTS

Lemma III.1. For all a 2R, p 2 (2, 1), and ↵ � a2, the equality in (2) is achieved by at least
one function in Xa.

Indeed, by the diamagnetic inequality
�� | |0��  | 0 + i a | a.e. ,
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which holds for any 2 Xa, we infer that any minimizing sequence { n} for (3) can be taken bounded
in H1(S1). By the compact Sobolev embeddings, this sequence is relatively compact in Lp(S1) and in
C(S1). The maps  7! s ⇡�⇡ | |2 d� and  7! s ⇡�⇡ | 0 + i a |2 d� are lower semicontinuous by Fatou’s
lemma, which proves the claim. ∏

The minimization problem (3) has several reformulations.

(1) Any solution  2 Xa of the minimization problem (3) satisfies the Euler-Lagrange equation

(Ha + ↵) = | |p�2  

up to a multiplication by a constant. We observe that v(s) =  (s) eias satisfies the condition

v(s + 2⇡)= e2i⇡a v(s), 8 s 2R , (6)

and we can reformulate (3) as

µa,p(↵)= min
v2Ya\{0}

Qp,↵[v],

where YaB
�
v 2C(R) : v 0 2 L2(S1) , (6) holds

 
and

Qp,↵[v]B
kv 0k2

L2(S1)
+ ↵ kv k2

L2(S1)

kv k2
Lp(S1)

.

(2) With v = u ei� written in polar form, the boundary condition becomes

u(⇡)= u(�⇡) , �(⇡)= 2⇡ (a + k) + �(�⇡) (7)

for some k 2Z, and kv 0k2
L2(S1)

= ku0k2
L2(S1)

+ ku �0k2
L2(S1)

. We can reformulate (3) as

µa,p(↵)= min
(u,�)2Za\{0}

ku0k2
L2(S1)

+ ku �0k2
L2(S1)

+ ↵ kuk2
L2(S1)

kuk2
Lp(S1)

,

where
ZaB {(u, �) 2C(R)2 : u0, u �0 2 L2(S1) , (7) holds}.

(3) The third reformulation of (3) relies on the Euler-Lagrange equations

� u00 + |�0 |2 u + ↵ u= |u|p�2 u and (�0 u2)0 = 0 .

Integrating the second equation and assuming that u never vanishes, we find a constant L such
that �0 = L/u2. Taking (7) into account, we deduce from

L
⌅ ⇡

�⇡

ds

u2
=

⌅ ⇡

�⇡
�0 ds= 2⇡ (a + k)

that

ku �0k2
L2(S1)

=L2
⌅ ⇡

�⇡

d�
u2
=

(a + k)2

ku�1k2
L2(S1)

.

Hence

�(s) � �(0)=
a + k

ku�1k2
L2(S1)

⌅ s

�⇡

ds

u2
.

Let us define

Qa,p,↵[u]B
ku0k2

L2(S1)
+ a2 ku�1k�2

L2(S1)
+ ↵ kuk2

L2(S1)

kuk2
Lp(S1)

.

In what follows, we denote by H1(S1) the subspace of the continuous functions u on ( ⇡, ⇡]
such that u(⇡) = u( ⇡) and u0 2 L2(S1). Notice that if u 2H1(S1) is such that u(s0) = 0 for some
s0 2 ( ⇡, ⇡], then

|u(s)|2 =
 ⌅ s

s0

u0 ds
!2


p

2⇡ ku0kL2(S1)

p
|s � s0 |

and u 2 is not integrable. In this case, we adopt the convention that Qa,p,↵[u]=Qp,↵[u].
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Lemma III.2. For any a 2 (0, 1/2), p > 2, and ↵ > a2,

µa,p(↵)= min
u2H1(S1)\{0}

Qa,p,↵[u]

is achieved by a function u > 0.

To prove this result, it is enough to check that the infimum (3) is achieved by a function  2 Xa

such that  (s) , 0 for any s 2 ( ⇡, ⇡]. Without loss of generality, we can assume that  is an optimal
function for (2) with k kLp(S1) = 1. Let us decompose v(s) =  (s) eias as a real and an imaginary part,
v = v1 + i v2, which both solve the same Euler-Lagrange equation

� v 00j + ↵ vj = (v21 + v22 )
p
2�1 vj , j = 1 , 2 .

The Wronskian w = (v1 v 02 � v 01 v2) is constant.
Neither v1 nor v2 vanishes identically on S1 because of (6). If both v1 and v2 vanish at the same

point, then w vanishes identically, which means that v1 and v2 are proportional. Again, this cannot
be true because of the twisted boundary condition (6). ⇤

If a = 0, Qa=0,p,↵[u]=Qp,↵[u] for any u 2H1(S1) \ {0}.

Lemma III.3. For any p > 2, if 0 < ↵  1/(p 2), then µ0,p(↵) = ↵ is achieved only by constant
functions. Inequality (2) also holds with p = 2 and ↵ = 1/(p 2) = 1/4 = µ0,p( 1/4), with equality
achieved only by constant functions.

Both results (case p > 25 and case p = 210) were already known. As a consequence, we have
the inequalities

ku0k2
L2(S1)

+ � kuk2
L2(S1)

� � kuk2
Lp(S1)

, 8u 2H1(S1), (8)

for any p > 2 and � 2 (0, 1/(p 2)], and

ku0k2
L2(S1)

+
1
4
ku�1k2

L2(S1)
� 1

4
kuk2

L2(S1)
, 8u 2H1(S1) . (9)

Inequality (9) actually enters in the family of inequalities (8), with the parameter
� = 1/4 = 1/(p 2) corresponding to the critical exponent p = 2 d/(d 2) = 2 since here
d = 1. This exponent is critical from the point of view of scalings because, at least for a func-
tion u with compact support in ( ⇡, ⇡), kukLp(S1) scales like ku0kL2(S1). This is why a unified proof of
both cases can be done with the Bakry-Emery method; see Appendix A.

We are now ready to study the key issues of Theorem II.1.

Lemma III.4. Let p > 2, a 2 [0, 1/2], and ↵ > a2.

(i) If a2 (p + 2) + ↵ (p 2)  1, then µa,p(↵) = a2 + ↵ and the equality in (2) is achieved only by
the constants.

(ii) If a2 (p + 2) + ↵ (p 2) > 1, then µa,p(↵) < a2 + ↵ and the equality in (2) is not achieved by
the constants.

In case (i), we can write

ku0k2
L2(S1)

+ a2 ku�1k�2
L2(S1)

+ ↵ kuk2
L2(S1)

= (1 � 4 a2) ku0k2
L2(S1)

+ ↵ kuk2
L2(S1)

+ 4 a2
 
ku0k2

L2(S1)
+

1
4
ku�1k2

L2(S1)

!

and conclude using (9) and then (8) with

� =
a2 + ↵

1 � 4 a2
 1

p � 2
.

In case (ii), let us consider the test function u"B 1 + " w1, wherew1 is the eigenfunction corresponding
to the first non-zero eigenvalue of d2/ds2 on H1(S1), with Neumann boundary conditions, namely,
�1 = 1 and w1(s) = 1 + cos s. A Taylor expansion shows that
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Qa,p,↵[u"]= a2 + ↵ +
�
1 � a2 (p + 2) � ↵ (p � 2)

�
"2 + o("2) ,

which proves the result. ∏

The proof of Lemma III.4, (i) relies on (8) and (9). It is remarkable that it does not use rigidity
results based on the carré du champ method, at least directly.

It follows from the definition ofQa,p,↵[u] that a 7! µa,p(↵) is nondecreasing on [0, 1/2). The strict
monotonicity follows from the existence of an optimal function, which is known by Lemma III.1.
This concludes the proof of Theorem II.1. The remainder of this section is devoted to complementary
results, which specify the range of µa,p(↵) when a varies in [0, 1/2).

Let us consider
⌫p(↵)B inf

v2H1
0(S1)\{0}

Qp,↵[v] .

Here H1
0(S1) denotes the subspace of the functions v 2H1(S1) such that v(±⇡) = 0. Since (6) is

satisfied by any function in H1
0(S1), we have the following estimate.

Lemma III.5. If p > 2, ↵ > a2, and a 2R, then

µa,p(↵)  ⌫p(↵) .

Moreover, this inequality is strict if a 2 [0, 1/2).

If {un}n2N is a minimizing sequence such that kunkLp(S1) = 1 for any n 2N, then it is clearly
bounded in H1(S1), and so, by the compact Sobolev embeddings, it is relatively compact in L2(S1),
Lp(S1), and C(S1). Up to subsequences, {un}n2N converges to some function u weekly in H1 and
strongly in L2(S1), Lp(S1) and C(S1). After noticing that Qp,↵[|u|] = Qp,↵[u], we obtain the following
result.

Lemma III.6. If p > 2 and ↵ > a2, then ⌫p(↵) admits a non-negative minimizer.

The strict monotonicity of a 7! µa,p(↵) is a consequence of Lemma III.6 and, as a consequence,
we know that

µa,p(↵)< µ1/2,p(↵)  ⌫p(↵)

for any a 2 [0, 1/2). It turns out that the last inequality is an equality.

Theorem III.7. For any p > 2 and ↵ > a2, we have

µ1/2,p(↵)= ⌫p(↵) .

This result was already known for the limit cases p = 210 and p = +1.9 To prove it, we set
v(s) = eis/2  (s) and note that v(s + 2⇡) = v(s) for all s, which follows from the periodicity condition (6)
with a = 1/2. Moreover, the derivative v 0 satisfies v 0(s + 2⇡) = v 0(s). Note that these boundary condi-
tions also hold for the real part and the imaginary part of v separately. We call them v1 and v2. Our prob-
lem is to minimize Qp,↵[v] subject to these conditions. Both v1 and v2 must vanish at some point but
a priori these points need not be the same. We set ⌘j = |vj |, j = 1, 2, and note that

Qp,↵[v]=
s ⇡�⇡

f
⌘ 021 + ⌘ 022

g
d� + ↵ s ⇡�⇡

f
⌘2

1 + ⌘2
2

g
d�

k⌘k2p
.

The functions ⌘j are now periodic. They are not necessarily smooth but are at least continuous.
Now we replace both ⌘1 and ⌘2 by their symmetric decreasing rearrangements around the point 0.
The numerator decreases for the usual reasons and the denominator increases (see Lemma B.1, in
Appendix B). Thus, the symmetrically decreasing rearranged functions ⌘⇤1 and ⌘⇤2 have a maximum
at 0 and vanish at ±⇡ so that ⌘⇤1 + i ⌘⇤2 2H0

1(S1). If v is a minimizer of Qp,↵ under Condition (6) with
a = 1/2, then

⌫p(↵) Qp,↵[⌘⇤1 + i ⌘⇤2] Qp,↵[v]= µ1/2,p(↵) .

∏
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With the convention that Qa,p,↵[u]=Qp,↵[u] if u 2H1
0(S1), we can claim that the infimum of

Qa,p,↵ is attained by some u 2H1(S1) \ {0} for any a 2 [0, 1/2], including in the case a = 1/2 for which
the minimizer can be taken in H1

0(S1) \ {0}.

IV. PROOF OF COROLLARIES II.2 AND II.3

Let us start with the proof of Corollary II.2. Consider the quadratic form associated with
Ha '. Using Hölder’s inequality, we obtain

k 0 + i a k2
L2(S1)

�
⌅ ⇡

�⇡
' | |2 d� � k 0 + i a k2

L2(S1)
� µ k k2

Lp(S1)
,

where µ= k'kLq(S1) and 1
q + 2

p = 1. Let us choose ↵ such that µa,p(↵) = µ. It follows from (2) that

k 0 + i a k2
L2(S1)

� µ k k2
Lp(S1)

� � ↵ k k2
L2(S1)

and from Theorem II.1 that µa,p(↵) = a2 + ↵ if a2 (p + 2) + ↵ (p 2)  1. This implies that

�1(Ha � ') � a2 � k'kLq(S1)

if 4 a2 + k'kLq(S1) (p � 2)  1. In that case, the equality is achieved by ' ⌘ const. The proof is
complete. ∏

Now let us prove Corollary II.3. Let x= (r, #) 2R2 be polar coordinates in R2. Then we find
⌅

R2
|(ir + a) |2 dx=

⌅ 1

0

⌅

S1

 
r |@r |2 +

1
r
|@# + i a |2

!
d# dr .

Let ⌧ > 0. Then⌅ 1

0

⌅

S1

1
r

(|@# + i a |2 � ⌧ ' | |2) d# dr � �1(Ha � ⌧ ')
⌅ 1

0

⌅

S1

1
r
| |2 d# dr

� � ↵a,p(⌧ k'kLq(S1))
⌅ 1

0

⌅

S1

1
r
| |2 d# .

Note that if ⌧ = 0, then
↵a,p(⌧ k'kLq(S1))= ↵a,p(0)=� a2 ,

and for a sufficiently large ⌧ the value of ↵a,p(⌧ k'kLq(S1)) is positive. Therefore we can find ⌧ > 0
such that ↵a,p(⌧ k'kLq(S1))= 0. This value is unique since ↵a,p(µ) is strictly monotone with respect to
µ. The conclusion easily follows. ⇤
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APPENDIX A: A PROOF OF LEMMA III.3 BY THE CARRÉ DU CHAMP METHOD

Let F�[u]B ku0k2
L2(S1)

+ �
�kuk2

L2(S1)
� kuk2

Lp(S1)

�
. If p > 2, it is enough to prove µ0,p(�) = � for

� = ↵?, ↵? B 1/(p 2), because

F�[u]=
�
1 � � (p � 2)

� ku0k2
L2(S1)

+ � (p � 2)F↵?[u]

if 0 < �  ↵?. Let us consider a positive solution of the parabolic equation

@u
@t
= u00 + (p � 1)

|u0 |2
u
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and compute

� d
dt
F↵?[u(t, ·)]=

⌅ ⇡

�⇡

⇣
|u00 |2 � |u0 |2

⌘
d� +

p � 1
3

⌅ ⇡

�⇡

|u0 |4
u2

d�

using several integrations by parts. The first term in the rhs is non-negative by the Poincaré inequality,
as well as the second one. Notice that ⇢ = |u|p is a solution of the heat equation so that positivity
is preserved by the flow and F↵?[u(t = 0, ·)] � limt!+1 F↵?[u(t, ·)]= 0, which is exactly (8) written
with u = u(t = 0, ·). The strict positivity condition is easily removed by an approximation procedure.
Exactly the same computations give the result in the case p = 2 and establish (9).

For p > 2, the method is well known.11,12 The result for p = 2 was established earlier10 but, as
far as we know, this proof is new.

APPENDIX B: A SYMMETRIZATION RESULT

Here f ⇤ denotes the symmetric decreasing rearrangement of f.

Lemma B.1. Let p � 2. For any non-negative functions f, g 2 Lp(S1), we have that
⌅ ⇡

�⇡

⇣
f 2 + g2

⌘p/2
d� 

⌅ ⇡

�⇡

⇣
f ⇤2 + g⇤2

⌘p/2
d� .

The case p = 2 is obvious, in fact there is equality. Hence we assume that p > 2. Write
 ⌅ ⇡

�⇡

⇣
f 2 + g2

⌘p/2
d�

!2/p

= sup
kv kLq (S1)=1

⌅ ⇡

�⇡

⇣
f 2 + g2

⌘
v d�,

where 1/q + 2/p = 1. Clearly, we may choose v to be positive. By standard rearrangement inequalities,
⌅ ⇡

�⇡

⇣
f 2 + g2

⌘
v d� 

⌅ ⇡

�⇡

⇣
f ⇤2 + g⇤2

⌘
v⇤ d�

and kv⇤kLq(S1) = kv kLq(S1): the proof is completed with

sup
kv⇤ kLq (S1)=1

⌅ ⇡

�⇡

⇣
f ⇤2 + g⇤2

⌘
v⇤ d� =

 ⌅ ⇡

�⇡

⇣
f ⇤2 + g⇤2

⌘p/2
d�

!2/p

.

APPENDIX C: SOME NUMERICAL RESULTS

To compute the curve ↵ 7! µa,p(↵), we systematically solve the Euler-Lagrange equation
associated with the variation of Qa,p,↵, i.e.,

� u00 +
a2

u3
⇣
s ⇡�⇡ 1

u2

⌘2
+ ↵ u= up�1, (C1)

where the solution u > 0 is normalized by

µa,p(↵)
 ⌅ ⇡

�⇡
up d�

! 2
p�1

= 1 .

This condition a posteriori provides the numerical value of µa,p(↵). To impose the boundary condi-
tions u0(0) = u0(⇡) = 0, we use a shooting method and solve the ordinary differential equation (C1)
on R with the conditions u0(0) = 0 and u(0) = � > 0. To emphasize the dependence in �, let us denote
it by u�. For any � > 0, � , (a2 + ↵)1/(p�2), the solution is non-constant and periodic so that

⇢(�)=min{s > 0 : u0�(s)= 0}
is well defined. The shooting parameter � is then determined by the condition that ⇢(�) = ⇡. Since
(C1) involves a nonlocal term, an additional fixed-point procedure is needed to adjust the coefficient
of u 3 in the equation. Some plots are shown in Figs. 1 and 2.
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FIG. 1. The curve ↵ 7! µa,p(↵) with p = 4 and a = 0.45. The only solutions to (C1) are the constant functions for any ↵ such
that a2 = 0.2025  ↵  0.1075 and, in this range, µa,p(↵) = a2 + ↵. A branch of non-constant optimizers of (2) bifurcates
at ↵ = 0.1075.

FIG. 2. The curve ↵ 7! µa,p(↵) with p = 4 and a = 0.2. Here the branch of non-constant optimizers of (2) bifurcates
at ↵ = 0.38 which corresponds to a2 (p + 2) + ↵ (p 2) = 1.

The equality in (2) is achieved only by constant functions according to Lemma III.4 if
a2 (p + 2) + ↵ (p 2)  1: in this case, � = (a2 +↵)1/(p�2) ⌘ u�. For any a 2 (0, 1/2) such that a2 (p + 2)
+ ↵ (p 2) > 1, our method provides us with a non-constant solution u of (C1) which realizes the

FIG. 3. Here p = 4 and ↵ = 0. Plot of the solution of (C1) for a = 0.40, 0.41, . . ., 0.49. The thick curve solves u00 + up 1 = 0
and it is explicit. Similar patterns are found when ↵ , 0, with a non-explicit curve solving (C2) in the limit as a! 1/2.
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equality in (2). As a ! 1/2, the integral s ⇡�⇡ u�2 d� diverges so that the limit curve is described by
the solution of

� u00 + ↵ u= up�1 (C2)

with boundary conditions u0(0) = 0 and u(⇡) = 0. See Fig. 3.
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