SPECTRAL ASYMPTOTIC BEHAVIOR OF A CLASS
OF INTEGRAL OPERATORS

A. A. Laptev UDC 513.88

Integral operators of the type

1 xByY
(Tf) (x) = Som—w—a f ) dy,
the kernels of which have a singularity at a single point, are discussed. H. Widom's meth-
. . def
od and some of his results are used to show that, if «>0 8, v>— % o= B-+v—at+1>0 then

we have for the distribution function of the singular numbers of the operator,

lim N (g, Ty In—2 1 = L |
£—0 € 2n2e

1. As a rule, when the asymptotic behavior of the eigenvalues of an integral operator has been dis-
cussed, kernels which have a singularity on a diagonal have been considered (see e.g., [1], where a bibli-
ography may be found). The asymptotic behavior is here of a power type and is only influenced by the be-
havior of the kernel in the neighborhood of the diagonal.

Conditions of a different type were imposed on the kernel by H. Widom [2]. In [2] was investigated
the asymptotic behavior of the eigenvalues of integral operators of the convolution type, under the assump-
tion that the Fourier transform K(t) of the kernel is a positive even function, decreasing for t>0. The
asymptotic behavior is expressed in terms of the behavior of K(t) as t— « and is not necessarily of the

power type.

In the present article we examine the asymptotic behavior of the singular numbers* (s-numbers) of
the integral operator

11

M@ =20 g ay, ®

b (2 -+ y)*

acting in space L,(0, 1). We shall obtain the principal term of the asymptotic form of the s-numbers of the
operator (1). Since the kernel has a singularity only at the point (0, 0), the asymptotic behavior proves to
be of the hyperpower type. It is influenced solely by the neighborhood of the point (0, 0), so that the result
would be unaffected were the "weight" x5, yY in (1) to be replaced by arbitrary functions u {(z), v(y) suchthat
u(x) ~ cixB, v(y) ~ ¢y’ as x, y—0. Let us denote by N{e, K; (a, b) x (c, d)) the distribution function of the
s-numbers of an integral operator K, acting from Ly(a, b) into Ly(c, d):

N(87 K) = Zn:sn([{)>E L.

*Regarding the singular numbers of completely continuous operators see [3].
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Our basic result is as follows:

THEOREM. Let

1 det
0>0; B 1> — 53 p=B+1—0-1>0. (2)
Then the following asymptotic formula holds for the s-numbers of the integral operator (1):
lim (In 1/¢)2 ¥V (e, T) = (2n2p)"". @)
€ —0

With g = y the operator (1) is symmetric and positive, so that (3) transforms into the relation for the
eigenvalues. If at the same time « = 1, we can obtain (3) from Widom's theorem [see [4], Theorem (3.3)].

2. Widom's method [4] may be used for proving our theorem. Considerable technical modifications
have to be made as compared with [4], because the kernels considered are more complicated. Below we
give a statement of Widom's lemma [2], on which the proof of our theorem is based. This lemma concerns
the behavior of the eigenvalues of the integral operator

(Coafy@) = | ZED 1) ay, @

acting in space L,(0, a). The quadratic form of the operator (4) can be simply expressed in terms of the
Fourier transform

Fty =" 1@ eivda. (5)
We have, in fact,
G o, ) = —}1-5_1 F (t) [ dt.

LEMMA 1. The following statements can be made regarding the eigenvalues of the integral operator

1) given an arbitrary 6 > 0, there exists a number Cp such that with ve < (1~6)mn we have

A, (GV,a) <e—65n;

2) with arbitrary 6, € >0, there exists N = N, such that with n> N, va = (1+ 8)rn we have

1 —e<<M (G, )<
We shall use Lemma 1 for two-sided estimates of the eigenvalues of integral operators of a special
type.
Let the function K(x), — = < x < =, be such that its Fourier transform
E@t)= S:a K (z) eitdz
is an even nonnegative functionh, monotonically decreasing for t > 0 and such that
B () = ematvol);, s 50, (6)

Denote by E1(¢), £> 0, the function inverse to K(t), t > 0.

Consider the integral operator

!

(Ko@) =, K@ — )7 )y, @

acting in L,(0, a).
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LEMMA 2. Let the kernel of the operator (7) satisfy the above conditions. Then, given any 6 > 0,
there exist C§, Cg, ag > 0 such that with arbitrary a > a5, ¢ > 0 we have .

a Cé —7 — a Cg {
___A’ft('l—,l—(s) ln—g-<]\/(8,l(a)\\\—-————”‘4n(1_é) In—e. \8)
Proof. We transform the quadratic form of the operator K;:
1= )
)=\ \ Ke—pF@wayde —5-\" R@|F 0P, ®)

where the function F is defined by (5). Since K is monotonic, with arbitrary v > 0 we have

R0
(Koo /) < ()L| B dt - (1"5 |F@)Pdt = K (0) (G ofs /) + B () (/1 1)-
We fix 6 > 0. Let va = (1— 6/2)nn; then, by Lemma 1, Paragraph 1, and the familiar properties of the
s-numbers,

My (K,) << B (0) €582 1 B (1 — 8/2) a™n). (10)

In accordance with (6), there exists Cj, Ch = 2K (0), such that
(1 —82)yman) < g-(l—s)A-a—ln

We put as = 1ACss Then with o > ase™ 32 < e-(-94%-m  we finally obtain
Ay (K) < Cpomt-Drtza=n,

This last is equivalent to the right-hand inequality of (8). To prove the left-hand inequality, we use
the relation

(K > K (v) (G of, J),

whence

A (Ko) > K (WA, (G, 4).

Let va = (1 +8/2)nn. Then, by Lemma 1, Paragraph 2, with £ > 0 there exists N such that when n>N,
AGp,g) >1—e. I 6= min (A, (G, ), V' 1T—¢),we find by virtue of the properties of the function K() that

NN

there exists Cj, 82 >> C; > 0, such that for any positive integer n

P (Go0) > V5, R (3) >V Crmawrtrmam,
which proves the left-hand inequality of 8). Q.E.D.
3. Let us transform the operator (1) to a form more convenient for our investigation.
To this end, consider the operator

Vi=g g2 =16V 1)

isometrically mapping L,(0, 1) into L,(0, «). The operator T= VTV* unitarily equivalent to the operator
T, is given by the relation

(Tg) (z) = 2~ B: ela-1-28)5p(a~1-20y ¢h=2 (x — y) g () dy. (12)

The kernel of this operator [as distinct from the kernel of the operator (1)] contains a function, dependent
on the difference between the arguments. The idea of the further proof is as follows: we divide the semi-
axis [0, =) into intervals, in each of which we replace the "weight" of the type €®X by a constant; in each of
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the "diagonal" squares we employ inequalities derived from Lemma 3, and we estimate the error caused
by the presence of the "nondiagonal” squares. This leads to (3).

We still require some auxiliary propositions. The first is obtained by applying Lemma 2 to a kernel
of special type. Denote by K , the integral operator in L,(0, a) given by

(Kaof) (@) = 2\ ch2(z — y) () dy, 0< . (13)
The Fourier transform of the kernel is found from the expression (see [5])
1 it 2
R = s | U5+ 2] - a4)

Hence I?Q is an even positive function. It can easily be shown (e.g., by expanding the function into an infi-
nite product) that K is monotonically decreasing for t = 0.

We next use Binet's equation (see [6]) for the principal branch of log T'(z):

}ogI’(z):(z—-;‘—)]nz—z—lr—}anﬁ—i—S (é——L—i— xi )e_’m dz, Rez > 0.

o x
From this and (13), we have
log B (1) = — -t +o(b). (15)

The kernel of the integral operator (13) thus satisfies the conditions of Lemma 2 (with A = 7/2), and hence
inequalities of the type (8) hold for the distribution function of the eigenvalues of the operator (13).

For estimating the errors caused by the presence of the "nondiagonal™ squares, we have to consider
operators in L4{0, «) of the type

(K (z) = 217 S: ch=* (z + y) e-C-u)f () dy. (16)

LEMMA 3. Let 8> 0. Then, for the s-numbers of the integral operator (16) we have the bound

N (5, K) < C In—, where e< 1, an

Proof. Denote by [/ the positive integer such that (= 1, and introduce the auxiliary operator

~

Uj 1, F(x)-= V %f{-é—ln 1/ch) e,

isometrically mapping Ly(0, =) into L,(0, 1). The s-numbers of the operator K are equal to the s-numbers
of the operator K = UKU*, where

~ 1
(RF) @) =1\ Gy o2t -+ @)= F () dy.

The integral operator with the kernel (1 + lel)—oz satisfies the conditions of A. O. Gel'fond's theorem
(see [7], Theorem IT), so that its eigenvalues will have order O(e™®1™). The operator of multiplication by the
function 2¢*b2 in space L,(0, 1) has norm unity. Hence we obtain (17).

4. Proof of the Theorem. We fix a > 0 and a positive integer m. We define a set of operators Pj,
Qj in space L,(0, «). Let Pj, Qj be the operators of multiplication by the characteristic functions of the
sets [(i—L)a, ja), [ja, ©) (j="1, ..., m), respectively.

We use these operators to decompose the operator (12) into the sum

T3 PAP N QAP PAQ) - QT (18)
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Returning by means of the change of variables z — —1,¢™ln 2, y > —14"" Iny to the interval of integra-

tion [0, 1], we find that the operator Qm'i'Qm is unitarily equivalent to the operator ¢-2»T, where T is the
initial operator (1) and p is defined by (2).

Consequently,

[T Q< Coe2em, - Cy == | T

Given £ > 0 and a, let the number m be chosen from the condition

20 qem2%ma < g < 2C,e~2m-ne, (19)
Then,

N (2/2, Q,,TQ,) = 0.

Further, using the familiar properties of the s-numbers, we find that
m ~ m I P m B .
N (S’ 2;’:1 PiTPj) = Z,‘-ﬂ Ve, Pirl P) < ijl N, 0‘29\1—1)a+ana!a)’

where ¢ = ot — 1 —2p |+ o — 1 — 29].

By (15) and the right-hand inequality of (8), given any 6 > 0, there exist as, Cg such that with a > a6,
£>0 we have

m g C;

N (3, 2}‘:1 P',-'quj) < 2a 2 In W . (20)

' TS 2(1—p) “it

From the inequalities (19) we obtain a bound for the product ma, where one of these parameters, say a, can
be specified arbifrarily. If we set

aza(a)::ln”%, (21)

then

9 ‘-’ A A
m = -)1— in's 20 + 0 (In‘/z N . (22)
20 € 3

e
Then, given ag, there exists £y > 0 such that with £ < g we have a(€) = a5, and hence (20) remains in force.

Using (21) and (22), we easily obtain the limit relation

L e
n=2——. . nh— =
ET; i a(e) 2’;=1‘n £.o— 2PU1)alE) 4o
Hence,
e | ™ pAn) t
Tim In™2 e -N (8, 2";’:1 P,r[ P,) S m .

£ =0 N
A similar lower bound may be found from (21) and (22) and the left-hand inequality of (8); we obtain

a1 mos 1
lil_n‘lﬂz—é—LV(S,z,j_leTPj)>m.

£ 0
Consider the distribution functions of the operators Qj'ij, where 1< j = m.

On multiplying the kernel of the operator (12) by e*PY and using simple working, we find that

N (e, QTP IV (e, 21-2c-51-0Xe-0ch=2(z — ), ((j — 1) a, Ja) (ja; ) <N (&) 214 @01-21E0 chos (& - y), (2, § > OV
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Since 28 > —1, we have by Lemma 3

N (e, QTP) <y In -
The same inequality holds for the operators Pj'i'QJ- (1 = j =m). Using the Ky Fan inequality

N(ey + &, A+ B) <N (e, A) + N, B),

we obtain

3

. N e m . ! “nl , AT ’ o '
N@E <N /_4.., stl PiIP) + 2 Vg T,

RV SURAY
N W.PJTQJ//.

Multiplying (23) by 1n"2 (1/¢) and passing to the limit superior, we find that

fim In2 .-:-. N (e, LTS !

e TR RECT
Similarly,

NeE >N (% & Z:; PP, — Zm__

and, on passing to the limit inferior,

{

. - | T e TN~
I =N (e 1) > g -

&0

The inequalities (24) and (25), which hold for arbitrary 6 > 0, prove the theorem.

(23)

(24)

(25)

In conclusion the author thanks M. Z. Solomyak for suggesting the problem and for constant assistance.

LITERATURE CITED

1. M. Sh. Birman and M. Z. Solomyak, "Asymptotic behavior of the spectra of weakly polar operators,”

Izv. Akad. Nauk SSSR, Ser. Matem., 34, No. 5, 1142-1158 (1970).

2. H. Widom, "Asymptotic behavior of the eigenvalues of certain integral equations, II," Arch. Rat. Mech.

Anali, 17, No. 3, 215-229 (1964).

3. I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Non~Self-Adjoint Operators in

Hilbert Space [in Russian], Moscow {1965).
H. Widom, "Hankel matrices," Trans. Amer. Math. Soc., 121, No. 1, 1-35 (1966).

»

~3 O U1
P

-

W. V. Lovitt, Linear Integral Equations, Dover, New York (1950).

Mathematical Reference Library, Tables of Integral Transforms [in Russian], Vol. 1, Nauka (1969).
E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, Cambridge Univ. Press (1940).

1043



