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ABSTRACT. We give a survey of results on the Lieb-Thirring inequali-
ties for the eigenvalue moments of Schrödinger operators. In particular,
we discuss the optimal values of the constants therein for higher dimen-
sions. We elaborate on certain generalisations and some open problems
as well.

1. INTRODUCTION

1. LetH = H(V ; ~) be the Schrödinger operator

H(V ; ~) = −~2∆− V (x) on L2(Rd).

For suitable real-valued potential wellsV the negative spectrum{λn(V ; ~)}
of H is semi-bounded from below and discrete. Putσ ≥ 0 and~ > 0. The
Lieb-Thirring inequalities

(1.1) Sσ,d(V ; ~) ≤ R(σ, d)Scl
σ,d(V ; ~)

give, for appropriate pairs ofσ andd, bounds on the moments of the nega-
tive eigenvalues1

Sσ,d(V ; ~) = trHσ
−(V ; ~) =

∑
n

(−λn(V ; ~))σ

in terms of averages of phase space volumina

Scl
σ,d(V ; ~) =

∫ ∫
hσ−(ξ, x)

dxdξ

(2π~)d

=
Γ(σ + 1)

2dπd/2Γ
(
σ + d

2
+ 1
)~−d ∫ V

σ+ d
2

+ dx(1.2)

of the classical system with the correlated Hamilton functionh(ξ, x) =
|ξ|2 − V (x). The numerical factor in (1.2) is called the classical constant

Lcl
σ,d =

Γ(σ + 1)

2dπd/2Γ
(
σ + d

2
+ 1
)

and the usual Lieb-Thirring constantsLσ,d in the inequality∑
n

(−λn(V ; ~)) ≤ Lσ,d~
−d
∫
V
σ+ d

2
+ dx

evaluate asLσ,d = R(σ, d)Lcl
σ,d.

1Here and in the sequelx± = (|x| ± x)/2 denote the positive and negative part of
numbers, functions and hermitian matrices or operators.

1



RECENT RESULTS ON LIEB-THIRRING INEQUALITIES 2

2. The intrinsic link between spectral quantities and their counterparts in
(1.1) distinguishes these bounds from other variants of spectral estimates.
In particlar, the r.h.s. of (1.1) captures the correct order of the semi-classical
Weyl type asymptotics2

(1.3) Sσ,d(V ; ~) = (1 + o(1))Scl
σ,d(V ; ~) as ~→ 0.

But in contrast to (1.3) the inequalities (1.1) areuniform in ~ > 0 . This al-
lows one to extract hard information on the negative spectrum of Schrödinger
operators from the classical systems in thenon-asymptoticalregime as well.

3. The parameter~ can be scaled out from the bound (1.1). Up to a few
asymptotical arguments we put in the sequel~ = 1 and drop it from the
notation.

2. ON THE VALIDITY OF THE INEQUALITIES (1.1)

1. In the dimensionsd = 1, 2 any arbitrary small attractive potential
well will couple at least one bound state, see e.g. [4]. Hence, the quantity
S0,d(V ), being the counting function of the negative spectrum, is a positive
integer for any non-trivialV ≥ 0, while the phase space quantityScl

0,d(V )
can be arbitrary small. This contradicts to (1.1) forσ = 0 andd = 1, 2.

Moreover, in the dimensiond = 1 the unique weakly coupled negative
bound state behaves as3 [28]

(2.1) (−λ1(V ; ~))1/2 = (2−1 + o(1))~−1

∫
V dx for ~→∞.

HenceSσ,1(V ; ~) = O(~−2σ) for large~, whileScl
σ,1(V ; ~) = O(~−1). This

excludes (1.1) ford = 1 and0 < σ < 1/2. We conclude that

Fact 2.1. The inequality (1.1) fails for0 ≤ σ < 1/2 if d = 1 and forσ = 0
if d = 2.

2. On the other hand it is known that

Fact 2.2. The inequality (1.1) holds true forσ ≥ 1/2 if d = 1, for σ > 0 if
d = 2 and forσ ≥ 0 if d ≥ 3.

Estimates for Riesz means of eigenvalues have first been studied in [23].
There the casesσ > 1/2 for d = 1 andσ > 0 for d ≥ 2 are settled.
The methods of [23] do not cover the minimal admissible values ofσ. In
particular, forσ = 0 andd ≥ 3 (1.1) turns into the celebrated Cwikel-Lieb-
Rosenblum estimate on the number of bound states

(2.2) S0,d(V ) ≤ L0,d

∫
V
d/2

+ dx = R(0, d)Scl
0,d(V ), d ≥ 3,

2This formula can be deduced for allV ∈ C0(Rd). If for givenσ andd the bound (1.1)
holds, then (1.3) can be extended to allV ∈ Lσ+ d

2 (Rd). If on the other hand (1.1) fails,
formula (1.3) does not apply to allV ∈ Lσ+ d

2 (Rd) in general [5].
3The potentialV should have a positive mean and(1 + |x|)V (x) should be integrable.
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which has been shown in [8, 21, 25]. This bound on its turn implies (1.1)
for σ > 0 andd ≥ 3. Indeed,

Sσ,d(V ) =

∫ ∞
0

#{λn(V ) < −t}t
σ−1dt

σ
=

∫ ∞
0

S0,d(V − t)
tσ−1dt

σ

≤ R(0, d)

∫ ∞
0

Scl
0,d(V − t)

tσ−1dt

σ

= R(0, d)

∫ ∞
0

{∫ ∫
h(ξ,x)<−t

dxdξ

(2π)d

}
tσ−1dt

σ

= R(0, d)Scl
σ,d(V ).

This is a special case of an argument by Aizenman and Lieb [1], who show
that

Fact 2.3. If R(σ, d) is finite for somed and someσ ≥ 0 then

(2.3) R(σ′, d) ≤ R(σ, d) for all σ′ ≥ σ.

The other remaining caseσ = 1/2 andd = 1 has been settled in [29].
Here one finds in fact atwo-sidedestimate

(2.4) Scl
1, 1

2
(V ) ≤ S1, 1

2
(V ) ≤ 2Scl

1, 1
2
(V ), V ≥ 0, V ∈ L1(R).

The sharp lower bound in (2.4) is due to [13] and the sharp constant in the
upper bound has be found in [16]. Comparing weak and strong coupling
behaviours it is easy to see, thatσ = 1/2 andd = 1 is the only point in the
Lieb-Thirring scale, where such a two-sided estimate by the classical phase
space average is possible.

3. Let us mention that the bound from below in (2.4) induces a lower
estimate [13]

(2.5) S0,2(V ) ≥ Scl
0,2(V )

for non-negativespherical symmetricV in the dimension two. Moreover,
for d = 2 the negative spectrum ofH(V ) is infinite for any non-negative
potentialV ∈ L1

loc(R2)\L1(R2), that is wheneverScl
0,2(V ) is infinite, see

[30]. It seems to be an interesting problem to clarify, in what way (2.5) can
be extended to larger classes of potentials.

3. ON THE SHARP VALUES OF THE CONSTANTSR(σ, d).

1. While the validity of the bounds (1.1) is completely settled, the prob-
lem on the optimal values of the constantsR(σ, d) posts still some tantalis-
ing riddles. Namely, the inequality (2.3) shows that the functionsR(σ, d)
are non-increasing inσ for fixed d. This corresponds to the understanding,
that the eigenvalue momentsSσ,d(V ) should behave more regular and the
constantsR(σ, d) should actuallyimprovefor higher values ofσ.

On the other hand, early all known methods of proofs of (1.1) rely on
some initial estimates forS0,d(V − t), which are then modified and inte-
grated to bounds for higher moments. These intermediate bounds for the



RECENT RESULTS ON LIEB-THIRRING INEQUALITIES 4

counting functions do inevitably spoil the final estimates onR(σ, d) for
higherσ. Therefore, sharp results onR(σ, d) require adirect approach to
the eigenvalue moments. But the Birman-Schwinger principle, that is the
technical key element for estimates on counting functions, does not extend
to eigenvalue moments. The search for an appropriate detour is the core
of the mathematical difficulties in the determination of the values of the
constantsR(σ, d).

2. Below we summarise the available information on this topic and begin
with the cased = 1. Sharp constants in the dimension one appear already
in [23] and [1]. There it has been shown that

(3.1) R(σ, 1) = 1 for all σ ≥ 3/2.

Since the asymptotical behaviour (1.3) implies that

R(σ, d) ≥ 1

for all admissibleσ and d, the constants (3.1) are clearly best possible.
The original deduction of (3.1) uses atrace identityfor σ = 3/2 and the
monotonicity argument (2.3). We discussed this more in detail in section 5.

Another case in the dimensiond = 1 could be settled in [16] with

(3.2) R (1/2, 1) = 2.

This constant reflects the weak coupling limit behaviour (2.1). Moreover, if
V (x) = δ(x) thenH(δ) has the unique negative eigenvalueλ1(δ) = −1/4.
Up to translation and scaling this is the only potential for which the constant
(3.2) is achieved [16]. The result (3.2) is based on a monotonicity principle
for partial eigenvalue moments of a modified Birman-Schwinger operator.

The optimal values ofR(σ, 1) for 1/2 < σ < 3/2 are unknown. An
analysis of the lowest bound state shows that here
(3.3)

R(σ, 1) = sup
V ∈Lσ+ 1

2

Sσ,1(V )

Scl
σ,1(V )

≥ sup
V ∈Lσ+ 1

2

(−λ1(V ))σ

Scl
σ,1(V )

= 2

(
σ − 1

2

σ + 1
2

)σ− 1
2

.

The maximising potential is

V (x) = (σ2 − 1/4) cosh−2 x.

Lieb and Thirring conjectured in [23] thatR(σ, 1) is actually equal to the
term in the r.h.s. of (3.3). The result (3.2) in conjunction with (2.3) implies
at leastR(σ, 1) ≤ 2.

3. Until recently only sparse knowledge was available on sharp constants
R(σ, d) in higher dimensions. The first related result concerns the special
case of the eigenvalues{µk} of the Dirichlet LaplacianHD

Ω = −∆ in an
open domainΩ ⊂ Rd. In 1972 Berezin showed that
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Fact 3.1. For all σ ≥ 1, Λ ≥ 0, d ∈ N and any open domainΩ it holds

(3.4)
∑
k

(µk−Λ)σ− ≤
1

(2π)d

∫
Ω

dx

∫
Rd

dξ(|ξ|2−Λ)σ− = Lcl
σ,dvol(Ω)Λσ+ d

2 .

Remark.Choosing a potentialVΩ(x) = Λ for x ∈ Ω andVΩ(x) = −∞ for
x 6∈ Ω the bound (3.4) can be rewritten as

(3.5) Sσ,d(VΩ) ≤ Scl
σ,d(VΩ), σ ≥ 1, d ∈ N,

and is a special case of (1.1). Note that for this class of potentials the con-
stant in (3.5) is the semi-classical one.

We outline a short proof of (3.4) which is due to Laptev [17].

Proof. Let {φk} be an ortho-normed eigenfunctions ofHD
Ω , which we con-

tinue by0 onRd\Ω. Let {φ̃k} be the Fourier transformed of{φk}, which
form an ortho-normed system inL2(Rd). Applying Jensen’s inequality with
respect to the measures|φ̃k(ξ)|2dξ onRd we claim that∑

k

(µk − Λ)σ− =
∑
k

(∫
Rd

(|ξ|2 − λ)|φ̃k(ξ)|2dξ
)σ
−

≤
∫
Rd

(|ξ|2 − Λ)σ−
∑
k

|φ̃k(ξ)|2dξ.(3.6)

On the other hand,̃φk(ξ)are the complex conjugates of the Fourier coeffi-
cients of(2π)−d/2eixξ on Ω with respect to{φk} in L2(Ω). Hence,

(3.7)
∑
k

|φ̃k(ξ)|2 = (2π)−d
∫

Ω

|eixξ|2dx = (2π)−d
∫

Ω

dx.

If we insert (3.7) into (3.6) we claim (3.4) . �

Let us consider the Legendre transformed4 of the inequality (3.4) for
σ = 1. It is easy to see that

(
∑
k

(µk − x)−)∧(p) = (p− [p])µ[p]+1 +

[p]∑
k=1

µk

while (
Lcl

1,dvol(Ω)x1+ d
2

)∧
(p) = p1+ 2

d

(
Lcl

0,dvol(Ω)
)− 2

d d

2 + d
.

Sincef(x) ≤ g(x) for all x ≥ 0 impliesg∧(p) ≤ f∧(p) for all p ≥ 0, from
(3.4) withx = Λ for p = n ∈ N one recovers a result by Li and Yau [20]

n∑
k=1

µk ≥ n1+ 2
d

(
Lcl

0,dvol(Ω)
)− 2

d d

2 + d
.

4We recall that the Legendre transformedf∧(p) of a convex, non-negative function
f(x) onR+ is given byf∧(p) = supx≥0 (px− f(x)), p ≥ 0.
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4. The harmonic oscillator is another example which has been studied
in great detail in connection with Lieb-Thirring inequalities. Putm =
(m1, . . . ,md) and

(3.8) Vm(x) = Λ−
d∑

k=1

m2
kx

2
k, Λ > 0, mk > 0.

Then the operatorH(Vm, ) has the eigenvalues

λτ (Vm) = −Λ +
d∑

k=1

mk(1 + 2τk), τ = (τ1, . . . , τd),

with τk = 0, 1, 2, . . . In the dimensiond = 1 for σ = 1 the classical phase
space average calculates as

(3.9) Scl
1,1(Vm) = Λ2/(4m1).

On the other hand,

S1,1(Vm) =
∑
k≥0

(m1(1 + 2k)− Λ)−

= m1

(
Λ2(2m1)−2 − t2

)
≤ Scl

1,1(Vm),

wheret = 1 +
[

Λ
2~m1

− 1
2

]
− Λ

2~m1
. With the Lieb-Aizenman argument we

conclude that

(3.10) Sσ,1(Vm) ≤ Scl
σ,1(Vm) for all σ ≥ 1.

A similar evaluation in thed-dimensional case is much more involved and
has been carried out by De la Bretèche [9]. We present an alternative gener-
alisation to higher dimensions due to Laptev [18]. Putx′ = (x1, . . . , xd−1)
andV (x) = W (x′) −m2

dx
2
d. Integration in thedth coordinates ofx andξ

gives

Scl
σ,d(V ) =

∫ ∫
(|ξ|2 +m2

dx
2
d −W (x′))σ−

dxdξ

(2π)d

=
1

2(σ + 1)md

Scl
σ+1,d−1(W ).
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Separation of variables implies thatλτ ′,τd(V ) = λτ ′(W ) + md(1 + 2md).
Carrying out the sum overτd ≥ 0 first, from (3.10) forσ ≥ 1 it follows that

Sσ,d(V ) =
∑
τ ′,τd

(λτ ′(W ) +md(1 + 2τd))
σ
−

=
∑
τ ′

Sσ,1(λτ ′(W )−m2
dx

2
d) ≤

∑
τ ′

Scl
σ,1(λτ ′(W )−m2

dx
2
d)

≤
∑
τ ′

∫ ∫
(|ξ|2 +m2

dx
2
d + λτ ′(W ))σ−

dxddξd
(2π)

≤ 1

2(σ + 1)md

∑
τ ′

(−λτ ′(W ))σ+1 =
1

2(σ + 1)md

Sσ+1,d−1.

Hence, we have

(3.11)
Sσ,d(V )

Scl
σ,d(V )

≤ Sσ+1,d−1(W )

Scl
σ+1,d−1(W )

.

Continuing this induction procedure gives

Fact 3.2. For the harmonic oscillatorV = Λ−
∑d

k=1 m
2
kx

2
k it holds

(3.12) Sσ,d(V ) ≤ Scl
σ,d(V ) for all σ ≥ 1 and all d ∈ N.

Remark.The methods of [23, 21] give certain explicite upper bounds on the
constantsR(σ, d). In particular, the best known estimates onR(0, d) can be
found in [21]. There have been minor improvements for certain cases of
higher moments, see e.g. [6].

In [23] Lieb and Thirring posed the

Conjecture 3.3. In any dimensiond there exists a finite critical valueσcr(d),
such thatR(σ, d) = 1 for all σ ≥ σcr(d).

In particular, one expects thatσcr(d) = 1 for d ≥ 3. In the sequel we
state our results towards the solution of these conjectures.

4. LIEB-THIRRING INEQUALITIES FOROPERATORVALUED

POTENTIALS

1. Our results are based on the following generalisation of the Lieb-
Thirring inequalities (1.1). Namely, letG be a separable Hilbert space, let
1G be the identity operator onG and letV be a function onRd which takes
a.e. compact self-adjoint operatorsV (x) onG as its values. We shall study
the negative eigenvalues{λn(V ; ~)} of the operator

H(V ; ~) = −~2∆⊗ 1G − V (x) on L2(Rd)⊗G.

We shall find bounds

(4.1) Sσ,d(V ; ~) ≤ r(σ, d)Scl
σ,d(V ; ~)
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of the eigenvalue moments

Sσ,d(V ; ~) = trL2(Rd)⊗GH
σ
−(V ; ~) =

∑
n

(−λn(V ; ~))σ

in terms of the classical counterparts

Scl
σ,d(V ; ~) =

∫ ∫
trGh

σ
−(ξ, x)

dxdξ

(2π~)d
= Lcl

σ,d~
−d
∫

trGV
σ+ d

2
− (x)dx,

whereh(ξ, x) = |ξ|2⊗1G−V (x). The constantsr(σ, d) should not depend
onG and (4.1) should hold whenever the r.h.s. is finite. It is obvious that
(1.1) is a special case of (4.1) and

1 ≤ R(σ, d) ≤ r(σ, d).

If not needed we put~ = 1 and omit it from the notation.

2. In [19] we prove the following result, which confirms the first part of
the conjecture by Lieb and Thirring withσcl ≤ 3/2.

Theorem 4.1. [A. Laptev, T. Weidl]The identity

R(σ, d) = r(σ, d) = 1

holds true for allσ ≥ 3/2 and alld ∈ N.

One of the most interesting case for applications isσ = 1 andd = 3.
Here the best know estimate wasR(1, 3) ≤ 5.24 [6]. In [15] we show

Theorem 4.2. [D. Hundertmark, A. Laptev, T. Weidl]The bounds

R(σ, d) ≤ r(σ, d) ≤
{

4 for 1
2
≤ σ < 1

2 for 1 ≤ σ < 3
2

hold true in all dimensionsd ∈ N. In particular, if d = 1 then

R (1/2, 1) = r (1/2, 1) = 2 for σ = 1/2,(4.2)

R(σ, 1) ≤ r(σ, 1) ≤ 2 for 1/2 < σ < 3/2.

Remark.The method of [23] extends to systems and shows (4.1) forσ > 0
if d ≥ 2 and forσ > 1/2 if d = 1 with the same upper bounds on the
constantsr(σ, d) as are given there forR(σ, d). The validity of (4.1) in the
cased ≥ 3, σ = 0 has not been settled yet.

It turns out thatR(σ, d) = r(σ, d) in all cases, where the sharp values of
these constants are known. We formulate

Conjecture 4.3. The bound (4.1) holds for all pairsσ, d for which (1.1)
holds, and the optimal values of the constantsR(σ, d) andr(σ, d) coincide.

3. We sketch now the proof of Theorem 4.1. First we establish the bound
(4.1) with the identityr(σ, 1) = 1 for d = 1 andσ ≥ 3/2. By [1] it
suffices to study the caseσ = 3/2. Moreover, by a density argument one
can reduce the problem to finite-dimensional Hilbert spacesG and smooth,
compactly supported matrix functionsV . We apply then a generalisation of



RECENT RESULTS ON LIEB-THIRRING INEQUALITIES 9

trace formulae [7, 12] to matrix valued potentials [19]. Some more details
will be given in section 5.

Recently Benguria and Loss found an independent proof of this special
case based on the Darboux transformation [2].

4. In the second step of the proof we apply an iteration in the spatial
dimensiond. Namely, a standard variational argument implies that

Sσ,d(V ) = trL2(Rd)⊗G

(
− ∂2

∂x2
d

⊗ 1G − (∆′ + V (x′, xd))

)σ
−

≤ trL2(R)⊗G̃

(
− d2

dx2
d

⊗ 1G̃ −W−(xd)

)
,

wherex′ = (x1, . . . , xd−1), ∆′ is the Laplacian in the coordinatesx′ and
W (xd) is the operatorW (xd) = −∆′⊗1G−V (x′;xd) onG̃ = L2(Rd−1)⊗G
with the frozen coordinate parameterxd. Putσ ≥ 1. We apply (4.1) for
d = 1 with r(σ, 1) = 1 and the internal Hilbert spacẽG and find

Sσ,d(V ) ≤ Lcl
σ,1

∫
trG̃W

σ+ 1
2

− (xd)dxd

≤ Lcl
σ,1

∫
Sσ+ 1

2
,d−1(V (·;xd))dxd.

We continue this induction and find in the final step withx̃ = (x2, . . . , xd)

Sσ,d(V ) ≤
d−2∏
k=0

Lcl
σ+ k

2
,1

∫
Sσ+ d−1

2
,1(V (·; x̃))dx̃

≤
d−1∏
k=0

Lcl
σ+ k

2
,1

∫
trGV

σ+ d
2

+ (x)dx.

SinceLcl
σ,d =

∏d−1
k=0 L

cl
σ+ k

2
,1

andScl
σ,d(V ) = Lcl

σ,d

∫
trGV

σ+ d
2

+ dx, we find that

Sσ,d(V ) ≤ Scl
σ,d(V ). �

5. TRACE FORMULAE AND FURTHER ESTIMATES

1. PutG = Cn and consider the system of ordinary differential equations

(5.1) −
(
d2/dx2 ⊗ 1G

)
y(x)− V (x)y(x) = k2y(x), x ∈ R,

HereV is a compactly supported, smooth (not necessary sign definite) Her-
mitian matrix-valued function. Definexmin = min suppV andxmax =
max suppV . Then for anyk ∈ C\{0} there exist uniquen × n matrix-
solutionsy(x) = F (x, k) andy(x) = G(x, k) of (5.1) satisfying

F (x, k) = eikx1G as x ≥ xmax, G(x, k) = e−ikx1G as x ≤ xmin.

The pairs of matricesF (x, k), F (x,−k) andG(x, k),G(x,−k) form com-
plete systems of independent solutions of (5.1). Hence the matrixF (x, k)
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can be expressed as a linear combination ofG(x, k) andG(x,−k)

(5.2) F (x, k) = G(x, k)B(k) +G(x,−k)A(k).

The matrix functionsA(k) andB(k) are uniquely defined by (5.2).

2. The Buslaev-Faddeev-Zakharov trace formulae can be generalised to
matrix-valued potentials [23]. The first three identities read as follows

Lcl
1
2
,1

∫
trGV dx = S 1

2
,1(V )− I0(5.3)

Lcl
3
2
,1

∫
trGV

2dx = S 3
2
,1(V ) + 3I2(5.4)

Lcl
5
2
,1

∫
trGV

3dx− J = S 5
2
,1(V )− 5I4(5.5)

whereJ = 1
2
Lcl

5
2
,1

∫
trG (dV/dx)2 dx and

Ij = (2π)−1

∫
kj ln | detA(k)|dk, j = 0, 2, 4.

Fork ∈ R it holdsA(k)A∗(k) = 1G +B(−k)B∗(−k) and| detA(k)| ≥ 1.
HenceIj ≥ 0. If we drop the term3I2 from (5.4) we immediately find (4.1)
with r(3/2, 1) = 1.

Similarly (5.3) and (4.2) lead to the lower bound in

(5.6) Lcl
1
2
,1

∫
trGV (x)dx ≤ S 1

2
,1(V ) ≤ 2Lcl

1
2
,1

∫
trGV+(x)dx.

3. We put nowV ≥ 0. The upper bound in (5.6) and (5.3) imply

I0 = S 1
2
,1(V )− Lcl

1
2
,1

∫
trGV dx ≤ Lcl

1
2
,1

∫
trGV dx.

Moreover, from (4.1) ford = 1, γ = 5/2, r(5/2, 1) = 1 and (5.5) it follows
that

5I4 = S 5
2
,1(V )− Lcl

5
2
,1

∫
trGV

3dx+ J ≤ J.

For the scalar case the last inequalities was found in [23].
We apply now Hölder’s inequalityI2

2 ≤ I0I4 and insert the resulting
estimate onI2 back into (5.4). In view of (4.1) ford = 1, σ = 3/2 and
r(3/2, 1) = 1, after rescaling~ back into the estimate we find that

(5.7) 0 ≤ Scl
3
2
,1

(V ; ~)− S 3
2
,1(V ; ~) ≤ R(V )

with

R(V ) =
3

16

√∫
trGV dx ·

√∫
trG(

dV

dx
)2dx.

The term on the r.h.s. of (5.7) does not depend on~, while the quantities
Scl

3
2
,1

(V ; ~) andS 3
2
,1(V ; ~) show the asymptotical orderO(~−1) as~ → 0.
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Hence, the inequality (5.7) provides an uniform estimate on the remain-
der term to the Weyl asymptotics forS 3

2
,1(V ; ~) for sign-defined perturba-

tions. By continuity it extends to sign-defined operator-valued potentials
on infinite-dimensional Hilbert spacesG, for which the termsR(V ) and
S 3

2
,1(V ) are finite.

6. POLYHARMONIC OPERATORS

1. Another natural generalisation of (1.1) are Lieb-Thirring inequalities
for the operators

Hl(V ) = (−∆)l − V (x), l ∈ N
onL2(Rd). Let {λn(V )}n be the negative eigenvalues ofHl(V ). We study
the inequalities

(6.1) Sσ,d,l(V ) ≤ R(σ, d, l)Scl
σ,d,l(V ),

whereSσ,d,l(V ) =
∑

n(−λn(V ))σ and

Scl
σ,d,l(V ) =

∫ ∫
(hl(ξ, x))σ−

dxdξ

(2π)d
= Lcl

σ,d,l

∫
V 1+κ

+ dx

with

Lcl
σ,d,l =

Γ(σ + 1)Γ(κ+ 1)

2dπd/2Γ (lκ+ 1) Γ(κ+ σ + 1)

andκ = d/2l.

2. The validity of (6.1) is settled by

Fact 6.1. The inequality (6.1) holds true if and only if

σ ≥ 0 for κ > 1,
σ > 0 for κ = 1,
σ ≥ 1− κ for κ < 1.

The caseσ = 0 for κ > 1 has been settled in [8, 25]. In particular, the
techniques of [8] apply to non-integerl as well. Using the Lieb-Aizenman
trick we can then raise (6.1) to allσ ≥ 0. Forσ > 1 − κ with κ ≤ 1 one
can easily adapt the approach of Lieb and Thirring [23], see also [10, 11].
These methods do also extend to non-integer values ofl.

The critical case forintegervalues ofl has been solved in [24]. In analogy
with σ = 1/2 for l = d = 1 we have a two-sided estimate

(6.2) L̃1−κ,d,l~
−d
∫
V dx ≤ S1−κ,d,l(V ; ~) ≤ L1−κ,d,l~

−d
∫
V+dx

with appropriate positive, finite constants̃L1−κ,d,l andL1−κ,d,l. For non-
integer values ofl the validity of (6.2) has not been settled yet. Comparing
the asymptotical behaviour forSσ,d,l(V ; ~) as~ → 0,∞, we see thatσ =
1 − κ > 0 is the only power, for which a two-sided bound by the phase
space average might exist.
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Counterexamples to (6.1) in the respective cases can be found in the limit
~ → ∞. Now one might have a family of weak coupling states, but the
contribution of the lowest one is leading. This analysis leads to the

Conjecture 6.2. We have

L̃1−κ,d,l = Lcl
1−κ,d,l and L1−κ,d,l =

πκ

sin πκ
Lcl

1−κ,d,l for κ < 1.

3. Constants in Lieb-Thirring inequalities for higher order operators are
much less studied than their counterparts forl = 1. No sharp values of the
constants are known, not even in the dimensiond = 1. It is also not clear,
whether the bounds (6.1) extend to operator-valued potentials. A more de-
tailed investigation of Lieb-Thirring bounds for generall might pay off with
new insights for the special but most interesting casel = 1.
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