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ABSTRACT. We consider the difference operator Hyy = U + U~! + W, where U is the self-adjoint
Weyl operator U = e~?P b > 0, and the potential W is of the form W (z) = 2N 4 r(z) with
N € N and |r(z)] < C(1 + |z|?N~¢) for some 0 < ¢ < 2N — 1. This class of potentials W includes
polynomials of even degree with leading coefficient 1, which have recently been considered in [3]. In
this paper we show that such operators have discrete spectrum and obtain Weyl-type asymptotics
for the Riesz means and for the number of eigenvalues. This is an extension of the result previously
obtained in [8] for W =V + ¢V ™1, where V = &27%% (¢ > 0.

1. INTRODUCTION

The mirror manifolds of toric Calabi—Yau manifolds can be described by algebraic curves and
recently [2] it was observed that quantisation of these curves leads to functional-difference operators.
For local del Pezzo Calabi—Yau threefolds the simplest example yields the operator Hoy = U +
U '+ V +¢V~'on L%(R) [5]. Here, U and V denote the self-adjoint Weyl operators U = e~*"" and
V = e?™Q for b > 0, where (Py)(z) = i¢/(z) and (Q)(x) = x3)(x) are the quantum mechanical
momentum and position operators on L?(R).

In a recent paper [8], the authors proved that for ¢ > 0, the operator Hcy has a self-adjoint
extension with purely discrete spectrum consisting of finite multiplicity eigenvalues tending to infinity.
In addition, Weyl-type asymptotics for the Riesz means and for the number of eigenvalues were
established. These results prove that Hy is trace-class, which confirms part of a conjecture in [2].
In this short note, we consider the difference operator

Hy =U+U '+ W=Hy+W

where W € C(R) is a continuous, real-valued potential satisfying lim|,_,oc W(z) = oo that is of
the form W(z) = 22V 4 r(x) with N € N and |r(z)| < C(1 + |2|*¥~¢) for some 0 < ¢ < 2N — 1.
This class of potentials includes polynomials of even degree with leading coefficient 1, which have
recently been considered in [3]. We will prove that such an operator admits a self-adjoint extension
with discrete eigenvalues A; of finite multiplicity converging to infinity. Subsequently we will prove
Weyl-type asymptotics for the Riesz mean ) j21()\ — Aj)+ and for the number of eigenvalues below
a given value A as A — oo. (Note that the Riesz means for the negative spectrum of Schrédinger
operators with decaying potentials are associated with Lieb—Thirring inequalities [10].) These results
prove that, if Hyy is invertible, the inverse HV_V1 is trace-class, as claimed in [3]. Our proof method
also applies to the previously considered potential V + ¢V 1.

2. MAIN RESULTS

Since W € C(R) with lim|;_,o W (z) = oo, we can conclude that W is bounded from below. As a
consequence, the symmetric operator H = Hy+ W is bounded from below on the common domain of
Hy and W. We can thus consider its self-adjoint Friedrichs extension, which we continue to denote

by Hyw . The following proposition was proved in [8].
1
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Proposition 1. [8, Proposition 2.1] Let W (x) be a continuous, real-valued, bounded below function
such that limy| oo W(x) = +oo. Then the operator Hyw = Ho + W has purely discrete spectrum
consisting of finite multiplicity eigenvalues tending to +oo.

In [8] we considered the potential W (z) = 2 cosh(2mbz) and proved the following result.
Theorem 2. [8, Theorem 2.2] For the eigenvalues \; of Ho + 2 cosh(2mwbx) it holds that

lim 221 (A = Aj)+ ~ im 21 A=Ay
A—oo [[on (X — 2cosh(2mbk) — 2 cosh(2mbx)) 4 dk dz A—oo ﬁ)\ log® \

with a lower order term of the form O(Alog ).

Here a; = (a+|al)/2 denotes the positive part of a real variable. We also obtained the asymptotics
for the number of eigenvalues smaller than A.

Corollary 3. [8, Corollary 2.3] For the number of eigenvalues N(X\) = #{j >1: X\; < A} of Ho +
2 cosh(2mbx) smaller than A it holds that

N(A N(A

. ™ N

= —5—-=1.
A—00 ff)\—Qcosh(Qﬂ'k)—W(z)ZO dkdxr A—oo (#)2 10g2 h\

In this short note, we will prove the following analogous result for potentials growing polynomially.

Theorem 4. Let N € N and let r € C(R) be a function such that |r(z)| < C(1+ |z|*N =) for some
C>0,2N —1>¢>0 and all z € R. For the eigenvalues \; of Ho + x*N + r(z) it holds that

EjZI(/\ - /\j)+

.

el J g2 (X = 2cosh(2mbk) — 22N — r(x))4 dk dx

— lim 2321(/\ B /\j)+ — lim 2321(/\ B /\j)+ .
A=00 [[oa (X — 2cosh(2mbk) — 22N)  dkdz  A—oo %212\[111)\2%31 log A

with a lower order term of the form O(/\212V1\J;1 ).

Corollary 5. Let N € N and let v € C(R) be a function such that |r(z)| < C(1+ |z|*N~¢) for some
C>0,2N —1>¢>0 and all z € R. For the number of eigenvalues N(A) = #{j >1: \; < A} of
Ho + 22N + r(x) smaller than X it holds that

lim N
A—ro0 ff/\—2 cosh(2mwbk)—x2N —r(z)>0 dk dz
N(N) L N(N)

= lim = — =
A—roo ff)\—Q cosh(2mbk)—z2N >0 dkdx A—00 %)\W log A

Remark 6. Let Hy+ 22N +rx(x) satisfy the assumptions of Theorem 4. If the operator is invertible,
as is for example the case if 22V + ry(z) > ¢ > —2, then we can repeat the argument of [8] to prove
that (Ho + 22V + 7(x))~! is trace-class. Assuming for simplicity that A; > 0, this follows from

1 /°° 1 N[ /°° N(\)
— = ZaNvny = 2+ dA < .
Z|Aj\ N A W== N Y

1

Remark 7. The total symbol of the operator Hy + W is given by
o(z, k) = 2cosh(2mbk) + W (x) .

Theorem 2 and Theorem 4 as well as Corollary 3 and Corollary 5 are Weyl-type results that link the
asymptotic behaviour of quantum mechanical expressions to classical phase space integrals.
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In Section 3 we will give a proof of Theorem 2 and Theorem 4. It follows our arguments in [§],
where the special case of W(z) = 2 cosh(27wbz) was considered. In Section 4 we will prove Corollary
3 and Corollary 5. Before we proceed with the proofs, we compute the explicit asymptotics of the
phase space integrals. This will prove equality between the limits in the results above.

2.1. Leading order terms for hyperbolic cosine potential. In [8] we computed that for any
C,D>0

Aog?
(b)?

// (A = 2D cosh(27bk) — 2C cosh(27bz))y dk dx = + O(Alog ) (1)
R2

as A — oo and similarly

1 2
/ / dkdr = 08 A
A—2D cosh(27bk)—2C cosh(2mwbx) >0 (ﬂ-b)

+ o(log2 A) (2)
as A — oo.

2.2. Leading order terms for polynomial potential. Let N € N. By the min-max principle it is
sufficient to consider 7(z) = C(1 + |z|>N =) with C' € R and prove that the asymptotic behaviour of
the phase space integrals is independent of C' as A — oo. For later reference, we will also include an
additional multiplication factor D > 0 in front of the term 2 cosh(27bk) and prove that the asymptotic
behaviour does not depend on D.

Using the symmetry of the integrand as well as 2 cosh(27bk) > e2™* for k > 0 together with the

2mwbk

substitution v = De we can compute that

// (A — 2D cosh(2mbk) — 2N — C(1 + |=*NV79)) ; dk da

R2

< 4/ / (A — De?™F 2N (1 + 22NV 79)) | dk dx
0 0

e g — 2N _ 2N —¢
_ 3/ / A—u—=zx Cl+x )+ de du.
b D 0 u

Substituting v1 A = v and va A/ N) = 2 we obtain

// (A — 2D cosh(2nbk) — 2*N — C(1 + |=|*N 7)), dk dx
R2

2N+1 oo 00 — —_ — £
< 20 N / / (1 —un - v%N —Ox' - CvgN AN )+ dvg duy .
b D/AJo U1

Note that the domain of integration can be restricted to vo > 0 and 1 — v — U%N — X1 —
Cv2N=°X~2% > 0. We now use that (a — b); < ay + |b| for any a,b € R to split the integral
into two parts

// (A — 2D cosh(2nbk) — 2N — C(1 + |=*NV 7))y dk da
R2

2441 1 oo N _ .2N
< 22N / / w dvy dv;
b D/XJo U1

o )\71 +v2N—s)\77§V
2
+|O|/ / . d’U2 d’Ul .
D/X Jv2>0,1—v; —03N —CA=1-CA" 2N 03V 72>0 U1
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The first integral yields the correct leading order term. To prove this, we first compute the inner
integral explicitly

2N+1 2 2N 41

1
1*”1 Q=020 g goy = 2V ALW/ A=v)>
D/

D/)\ b2N+1 U1

Using partial integration we then observe that

1 2N+1 2N+41 1
(1—’01) 2N )\ D SN 2N—|—1 1
S =tog (5 ) (1- ) 1— 1) 7% log vy doy .
/,m 1 =8 ) TN D/A( vL) 7 log vy duy

It remains to note that

1
/ (1—vl)ﬁ10gv1 duvq
D/x

- [ () an < (1= ) (1= 5 - R (5)

to establish the asymptotic behaviour

(1—v — ’U2 )+ 2 2N 2N+1 2N+l
dvy d — log A A
~/D/>\/ vzdor = Cponp T lee Ao ET)

as A — oo. For the second integral, we use that for sufficiently large A
1
171)17@21\’ CcA ! C’v%N ATV 3271;1751)%]\7
and that

21/N

[e’e] )\ 1 + ,UQN E}\
/ / d’UQ dvy <A™ pay / — dUQ dv;
D/X Jv3>0,2—v1 — 303N >0 U1 D/

< 10A" 27 (log A — log D + log 2)

since A7!1taw 4 U§N7€ < 5 on the domain of integration for sufficiently large A. Putting everything
S8 log )\)/)\ av = 0 since € > 0, we obtain that

together and using that limAﬁoo()\

// — 2D cosh(27bk) — 22N — C(1 + |22V ~9)) . dk dz
R2
2

2N+1

AN log)\—i—O(

)

as A — oo. Similarly, we can use the fact that 2cosh(27bk) < 2e*™* for k > 0 together with the
substitution u = 2De?™** to obtain the lower bound

7rb2N+1

/ (A — 2D cosh(2nbk) — 2*N — C(1 + |=|*N ), dk dz
]RZ
> 4/ / (A —2De*™k _ 2N _ O(1 + 22NV =9)), dkdx

. _ 2N 1 2N —¢e
/ / u— uC( Rk ))+dwdu,

and by similar arguments as above

// (A — 2D cosh(2rbk) — 2*N — C(1 + |=*N 7)) L dk da
R?

2 2N /\2N+1
7rb 2N +

log)\+0( )
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as A — oo. Together with the upper bound, we obtain that

// (A — 2cosh(2mbk) — 22N — C(1 + |2|*V=9)) L dk d=
Rz

_2_ 2N
T wb2N +1

Similarly, we can show that as A — oo

2N+41

A28 log A+ O(N 2V ) |

2 1 1
// dkdxr = —A27 log A 4+ o(A?~ log ) .
A—2D cosh(2rbk)—22N —C(1+|z[2N <) >0 b

3. THE PROOF OF THEOREMS 2 AND 4

To establish upper and lower bounds on the sum of the eigenvalues we will employ ideas from [6],
with the Fourier transform replaced by the coherent state transform, which we will introduce below.

Let gg be the Gaussian function gg(z) = (6/7r)1/4e_§””2 with some 8 > 0, fixed for the moment.
Clearly gg satisfies ||gs|l, = 1 in L*(R). For ¢ € L*(R) the classical coherent state transform is given
by

D) = [ g = (o) do = (hen) @
where ey, , = e*™*gg(z — y). Following the computations in [8], we can show that

/ /R 2 dg2 cosh(27k) 0 (k, y)|? dk dy = /R (Ho) (2)y(z) da
where dg = e=BY/4 < 1. A standard computation furthermore shows that

[ W@k P akdy = [V @)@l do.

For convenience, we set W := W g3. Note that W € C(R) with inf,cr Wy (x) > inf,er W(z) since
gp is non-negative and [|gsl|, = 1. Furthermore, lim;|_,o Wp(x) = oo and thus the statements above
on the self-adjoint extension and discreteness of the spectrum also hold for the operator Hy + Wp.

We now establish results for the special case of a hyperbolic cosine potential as well as monomial
potentials. In [8, Section 2.1] we proved the following.

Proposition 8. Let b > 0. Then

1
(2 cosh(27wbx) * gé)(x) = 6—2 cosh(27bx)
B

where cg = e~ ("*/B - Conversely,
2 cosh(2mbz) = (cp2 cosh(27ba) * g3) () .
An analogous result holds for monomials.
Proposition 9. Let N € N. Then
(@ g3)(2) = 2* + pn (2)

where py (z) = Z;V:_Ol ﬁm\wx% is an even polynomial of order 2N —2 with coefficients ay,; € Ry
independent of 3. Conversely,

1,2N _ ((sz +(IN) *g%)(x)

where qn(x) = Z;V:_Ol ﬁij,jx” is an even polynomial of order 2N — 2 with coefficients by ;
independent of (.
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Furthermore, for 0 < e < 2N — 1 it holds that
(2N % gB) () < oo (14 [22V7)
with some constant c. n > 0 depending on [ and conversely
[PV < (1aPV 7 g3 )

Proof. Writing

2N o
/(w —y)*Ngs(y)?dy =) ( L )w’“ / v gs(y)* dy
R =0 R
and noting that the integral vanishes for odd k, we compute that
N N—1
2N . Y 4]53 .
/R(x—y)wgﬁ(yfdy:Z <2j>x2j/Ry2N Ygp(y)® dy = 2* 22N5N Z ,xQJ

§=0
which yields the first result. The second statement then follows by induction from the observations
that by the first identity

P = (05 ) — 5 = (12 = 1/29) + ) )

as well as
e
2N = (2N x g2)(z) — p(z) = (2N x gj)(2) — FN=7ONGT 27
7=0

Since g% >0 and
|z — y[PN 7 < max(2|a], 20y[)?N 7 < 22V (|0 PN 4 JyPVE)

we obtain the bound

/R & — y PN 2 ga(y)? de < 22V (|x2N€+ /R |y|2“gg<y>2dy>

which yields the claimed inequality. Finally, since z + || ~¢ is a convex function for 0 < ¢ < 2N —1
and ||gg|l, = 1 we can apply Jensen’s inequality to obtain

2N —¢
/ & — 5PN ga(y)* dy > / (& — y)gs()* dy
R R

_ |$|2N75 )

]

3.1. Lower bound on the Riesz mean. In [6] a lower bound on the eigenvalues of a general class
of operators on sets of finite measure with Neumann boundary condition was proved by means of an
argument that relied on the Fourier transform. Here, we use a similar approach, with the coherent
state transform replacing the Fourier transform.

Let w;{V denote the orthonormal eigenfunctions corresponding to the eigenvalues )\}’V of the operator
Hy + W satisfying the assumptions in Proposition 1. They form a complete set of the Hilbert space
L?(R) and by Plancherel’s theorem it holds that

~ 2
L P aray = o

S =) =3 (- // 10 (k. )| dk dy,
1

jz1 Jjz

~1. (5)

We can thus write
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and inserting the definition (4)

SO = [ 0=l ) T e

7j>1 7j>1

//Rzz)\ M)+ ((eny 000 eny) d dy .

j>1

We can replace the sum by an integral with respect to the projection-valued measure dEZV for Hy+W
on R as

SO- =[] [0 mi@B e, didy.

Jj=1

By the spectral theorem

/ @EY 4 yrexy) = (ks eny) = g2 =1,
R

and thus we can apply Jensen’s inequality with the convex function = — (A —z)4 to obtain the lower

bound
Z)\ A //( / (dE) ek,y7eky>>+dkdy. (6)

j>1

Finally, by the spectral theorem the inner integral is
/u<dEZV€k,y,6k,y> = (Hoeky; exy) + (Wery, €hy) -
R
Following [8] we know

1
—2 cosh(27k)

(Hoeg,y, ex,y) = 7
s

and we compute
Werysera) = [ Wialgato — 4)? do = Waly).
R

Combining these two results with (6) we arrive at

S A=Ay > //R ()\ - dlﬁz cosh(2mbk) — Wﬁ(y)>+ dkdy.

Jj=1

3.2. Lower bound for hyperbolic cosine potential. Let \; be the eigenvalues of Hy+2 cosh(2mbx).
In this special case, which was considered in [8], one obtains from the computations above with
W (x) = 2 cosh(2wbz) and from Proposition 8 that

1
> (A=) / / < —12cosh(27rbk)—2cosh(27rby)> dkdy .
i1 R2 d[-} C +

By (2) the asymptotic behaviour of this lower bound does not depend on cg, dg and is of the desired
form.
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3.3. Lower bound for polynomial potential. Let A; be the eigenvalues of Hy +22N 4r(x). By the
min-max principle, we obtain a lower bound on the Riesz mean if we replace z2Y 4 r(z) by the larger
potential z2V + C(1 + |z|?V~%). Using the computations above with W (z) = 22V + C(1 + |z|*V~¢)
together with Proposition 9 and the fact that for some 0 < § < ¢ both |px(y)|/(1 + |y|>*Y %) and
(14 [y2N=25) /(1 + |y|?>N~9) are bounded, yields

// ()\ - —2cosh(27rbk:) N — Cn(1+ |y|2N_6)> dk dy
j>1 R? +

for some constant Cy depending on 8. By (3) the asymptotic behaviour of this lower bound does
not depend on C,dg and is of the desired form.

3.4. Upper bound on the Riesz mean. Again, we will use a similar approach to [6], where an
upper bound on the eigenvalues of a general class of operators on sets of finite measure with Dirichlet
boundary condition was proved.

Let W be a potential that satisfies the assumptions of Proposition 1. Consider the eigenvalues
)\;-/VB of Hy+ W3 where Wg =W % g% and let ijﬁ be the corresponding orthonormal eigenfunctions.
Using the coherent state representations established at the beginning of this section, we can write

ST A =T ((Ho + W) ) 7)),

Jj=21 Jj=21

=> ()\ - //R (ds2 cosh(2mbk) + W ()[4, (k, y)[* dk dy)

i>1 +

By (5) we can apply Jensen’s inequality with the convex function x — (A — x)1 to obtain
S (=A< // (X — dp2cosh(2mbk) — W(y)), > [v]° (k,y)]* dkdy.
i>1 R? §>1

The eigenfunctions w;/vﬁ form an orthonormal basis in L?(R) and thus for all k,y € R

~TY, W,
o1y PR y)? =D Wewws oy P = llewyl® =
j=>1 j>1

which yields the upper bound

S -, < / (A — ds2 cosh(2mbk) — W(y)) , dkdy.

j>1 R

3.5. Upper bound for hyperbolic cosine potential. Let \; be the eigenvalues of Hy+2 cosh(2wbz).
In this special case, which was considered in [8], we can choose W (x) = ¢g2 cosh(2mbz) such that
Wpg(z) = 2 cosh(2mbx) by Proposition 8. The computation above then yields

> (A=) / / (A — dg2 cosh(2mbk) — cs2 cosh(27by)) , dkdy .

Jj=1
By (2) the asymptotic behaviour of this upper bound does not depend on ¢g, dg and is of the desired
form.

3.6. Upper bound for polynomial potential. Let \; be the eigenvalues of Hy + 22N 4+ r(z). By
the min-max principle, we obtain an upper bound on the Riesz mean if we replace 22V +r(x) by the
smaller potential 22 — C(1+ |z|*VN~¢). Applying again the min-max principle together with the last
statement in Proposition 9, we may further decrease this potential to z*¥ — C ((1+ |z[*N~¢) *gg) (z).
By Proposition 9 this potential coincides with Wj for the choice W (z) = 22N +qn (z) —C(1+ ||V ~#).
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The computation above and the fact that for some 0 < § < & both |gn(y)]/(1 + |y[*V %) and
(14 |y[2VN=5) /(1 + |y|>N~9) are bounded, yields

> (A=x)s < // (A = dg2 cosh(2rbk) — y*N + Cn (1 + |y*N %)), dkdy

i>1 R

with a constant Cy depending on 3. By (3) the asymptotic behaviour of this upper bound does not
depend on Cy,dg and is of the desired form.

4. THE PROOF OF COROLLARIES 3 AND 5

In [8] we provided two proofs of Corollary 3. The first one made use of an observation in [7]
that allows to obtain asymptotics of the traces of convex functions of self-adjoint operators from
the behaviour of their Riesz means. The result is then a consequence of the Karamata—Tauberian
theorem (see e.g. [12, Theorem 10.3]) in a version that allows for logarithmic factors (see e.g. [11]).
The second proof used a more direct approach in estimating the number of eigenvalues below a given
value by Riesz means. Here, we present a proof that is in spirit very close to the latter argument,
but emphasises the role of convexity. The proof method has been used in [1] in a similar context to
our work, but has also been applied previously in a non-linear setting by Lieb and Simon [9], who
give reference to Griffiths [4] for emphasising its use in mathematical physics.

Again, assume that W satisfies the assumptions of Proposition 1 and let /\}/V denote the discrete
eigenvalues of Hy + W. Note that for any h > 0

ST <SR =AY ) = hNY(N)

j=1 j=1
where N ()\) denotes the number of eigenvalues )\}/V below A. As a consequence, we obtain the upper
bound

NN <2 [D+r=2A)=> (A=) | (7)

Jj=1 Jj=1

S =

To obtain a lower bound we observe that similarly

NYO) 24 (S0 -0k | ®)

=21 Jj=21

4.1. Proof for hyperbolic cosine potential. The result can be proved analogously to the case of
polynomial potentials, for which details are presented below.

4.2. Proof for polynomial potential. Let A\; be the eigenvalues of Hy + 22N 4 r(x). By Theorem
4 there are constants C7, Cy such that

2 2N 2N+1 2N41
;()‘_)‘j)Jr < s (2N+1)\ v log A+ CiA 2N )

and

2 2N 2N+1 2N+1
A=) > — [ ——) log A A
3 D22 2 (e o G

for all sufficiently large A. Inserting these bounds into (7) and noting that due to the convexity of

the function f(x) = o logz for © > 1 necessarily f(A+ h) — f(A) < hf'(A+ h), we obtain the
upper bound
N (A + h)z¥ log(A + h) + 528+ (A + h)=F LGl BB - Co) R .
2 \a2v log A ~ A2 log A hAZN log A
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Choosing h = (p — 1)\ with p > 1 and letting A — oo yields

N(Y)

1
limsup ——— < p2~¥
Amoo 2T log A
and since p > 1 was arbitrary
N(A
lim sup () <1

Moo ZATN log A

Similarly, we can use the convexity of f(z) = 22v logx for 2 > 1 to conclude that fA)=f(A=h) >

hf

fro

"(A — h) and thus obtain the upper bound
Ny (A —h)2¥ log(A — h) + 528 (A — h)n . CoX28 — Oy (A — h) 2
2w log\ Azx log A hAZ¥ log A
m (8). Choosing h = (1 — p)A with p < 1 and letting first A — 0o and subsequently p — 1 yields
N(A
A—ro0 E)‘W log A
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