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Abstract. We consider the difference operator HW = U + U−1 +W , where U is the self-adjoint

Weyl operator U = e−bP , b > 0, and the potential W is of the form W (x) = x2N + r(x) with

N ∈ N and |r(x)| ≤ C(1 + |x|2N−ε) for some 0 < ε ≤ 2N − 1. This class of potentials W includes

polynomials of even degree with leading coefficient 1, which have recently been considered in [3]. In

this paper we show that such operators have discrete spectrum and obtain Weyl-type asymptotics

for the Riesz means and for the number of eigenvalues. This is an extension of the result previously

obtained in [8] for W = V + ζV −1, where V = e2πbx, ζ > 0.

1. Introduction

The mirror manifolds of toric Calabi–Yau manifolds can be described by algebraic curves and

recently [2] it was observed that quantisation of these curves leads to functional-difference operators.

For local del Pezzo Calabi–Yau threefolds the simplest example yields the operator HCY = U +

U−1 + V + ζV −1 on L2(R) [5]. Here, U and V denote the self-adjoint Weyl operators U = e−bP and

V = e2πbQ for b > 0, where (Pψ)(x) = iψ′(x) and (Qψ)(x) = xψ(x) are the quantum mechanical

momentum and position operators on L2(R).

In a recent paper [8], the authors proved that for ζ > 0, the operator HCY has a self-adjoint

extension with purely discrete spectrum consisting of finite multiplicity eigenvalues tending to infinity.

In addition, Weyl-type asymptotics for the Riesz means and for the number of eigenvalues were

established. These results prove that H−1CY is trace-class, which confirms part of a conjecture in [2].

In this short note, we consider the difference operator

HW = U + U−1 +W = H0 +W

where W ∈ C(R) is a continuous, real-valued potential satisfying lim|x|→∞W (x) = ∞ that is of

the form W (x) = x2N + r(x) with N ∈ N and |r(x)| ≤ C(1 + |x|2N−ε) for some 0 < ε ≤ 2N − 1.

This class of potentials includes polynomials of even degree with leading coefficient 1, which have

recently been considered in [3]. We will prove that such an operator admits a self-adjoint extension

with discrete eigenvalues λj of finite multiplicity converging to infinity. Subsequently we will prove

Weyl-type asymptotics for the Riesz mean
∑
j≥1(λ− λj)+ and for the number of eigenvalues below

a given value λ as λ → ∞. (Note that the Riesz means for the negative spectrum of Schrödinger

operators with decaying potentials are associated with Lieb–Thirring inequalities [10].) These results

prove that, if HW is invertible, the inverse H−1W is trace-class, as claimed in [3]. Our proof method

also applies to the previously considered potential V + ζV −1.

2. Main Results

Since W ∈ C(R) with lim|x|→∞W (x) =∞, we can conclude that W is bounded from below. As a

consequence, the symmetric operator H = H0 +W is bounded from below on the common domain of

H0 and W . We can thus consider its self-adjoint Friedrichs extension, which we continue to denote

by HW . The following proposition was proved in [8].
1
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Proposition 1. [8, Proposition 2.1] Let W (x) be a continuous, real-valued, bounded below function

such that lim|x|→∞W (x) = +∞. Then the operator HW = H0 + W has purely discrete spectrum

consisting of finite multiplicity eigenvalues tending to +∞.

In [8] we considered the potential W (x) = 2 cosh(2πbx) and proved the following result.

Theorem 2. [8, Theorem 2.2] For the eigenvalues λj of H0 + 2 cosh(2πbx) it holds that

lim
λ→∞

∑
j≥1(λ− λj)+∫∫

R2(λ− 2 cosh(2πbk)− 2 cosh(2πbx))+ dk dx
= lim
λ→∞

∑
j≥1(λ− λj)+
1

(πb)2λ log2 λ
= 1

with a lower order term of the form O(λ log λ).

Here a+ = (a+|a|)/2 denotes the positive part of a real variable. We also obtained the asymptotics

for the number of eigenvalues smaller than λ.

Corollary 3. [8, Corollary 2.3] For the number of eigenvalues N(λ) = # {j ≥ 1 : λj < λ} of H0 +

2 cosh(2πbx) smaller than λ it holds that

lim
λ→∞

N(λ)∫∫
λ−2 cosh(2πk)−W (x)≥0 dk dx

= lim
λ→∞

N(λ)
1

(πb)2 log2 λ
= 1 .

In this short note, we will prove the following analogous result for potentials growing polynomially.

Theorem 4. Let N ∈ N and let r ∈ C(R) be a function such that |r(x)| ≤ C(1 + |x|2N−ε) for some

C > 0, 2N − 1 ≥ ε > 0 and all x ∈ R. For the eigenvalues λj of H0 + x2N + r(x) it holds that

lim
λ→∞

∑
j≥1(λ− λj)+∫∫

R2(λ− 2 cosh(2πbk)− x2N − r(x))+ dk dx

= lim
λ→∞

∑
j≥1(λ− λj)+∫∫

R2(λ− 2 cosh(2πbk)− x2N )+ dk dx
= lim
λ→∞

∑
j≥1(λ− λj)+

2
πb

2N
2N+1λ

2N+1
2N log λ

= 1

with a lower order term of the form O(λ
2N+1
2N ).

Corollary 5. Let N ∈ N and let r ∈ C(R) be a function such that |r(x)| ≤ C(1 + |x|2N−ε) for some

C > 0, 2N − 1 ≥ ε > 0 and all x ∈ R. For the number of eigenvalues N(λ) = # {j ≥ 1 : λj < λ} of

H0 + x2N + r(x) smaller than λ it holds that

lim
λ→∞

N(λ)∫∫
λ−2 cosh(2πbk)−x2N−r(x)≥0 dk dx

= lim
λ→∞

N(λ)∫∫
λ−2 cosh(2πbk)−x2N≥0 dk dx

= lim
λ→∞

N(λ)
2
πbλ

1
2N log λ

= 1.

Remark 6. Let H0 +x2N + rN (x) satisfy the assumptions of Theorem 4. If the operator is invertible,

as is for example the case if x2N + rN (x) ≥ c > −2, then we can repeat the argument of [8] to prove

that (H0 + x2N + r(x))−1 is trace-class. Assuming for simplicity that λ1 > 0, this follows from∑
j≥1

1

|λj |
=

∫ ∞
λ1

1

λ
dN(λ) =

N(λ)

λ

∣∣∣∣∞
λ1

+

∫ ∞
λ1

N(λ)

λ2
dλ <∞ .

Remark 7. The total symbol of the operator H0 +W is given by

σ(x, k) = 2 cosh(2πbk) +W (x) .

Theorem 2 and Theorem 4 as well as Corollary 3 and Corollary 5 are Weyl-type results that link the

asymptotic behaviour of quantum mechanical expressions to classical phase space integrals.
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In Section 3 we will give a proof of Theorem 2 and Theorem 4. It follows our arguments in [8],

where the special case of W (x) = 2 cosh(2πbx) was considered. In Section 4 we will prove Corollary

3 and Corollary 5. Before we proceed with the proofs, we compute the explicit asymptotics of the

phase space integrals. This will prove equality between the limits in the results above.

2.1. Leading order terms for hyperbolic cosine potential. In [8] we computed that for any

C,D > 0 ∫∫
R2

(λ− 2D cosh(2πbk)− 2C cosh(2πbx))+ dk dx =
λ log2 λ

(πb)2
+O(λ log λ) (1)

as λ→∞ and similarly∫∫
λ−2D cosh(2πbk)−2C cosh(2πbx)≥0

dk dx =
log2 λ

(πb)2
+ o(log2 λ) (2)

as λ→∞.

2.2. Leading order terms for polynomial potential. Let N ∈ N. By the min-max principle it is

sufficient to consider r(x) = C(1 + |x|2N−ε) with C ∈ R and prove that the asymptotic behaviour of

the phase space integrals is independent of C as λ→∞. For later reference, we will also include an

additional multiplication factor D > 0 in front of the term 2 cosh(2πbk) and prove that the asymptotic

behaviour does not depend on D.

Using the symmetry of the integrand as well as 2 cosh(2πbk) ≥ e2πbk for k > 0 together with the

substitution u = De2πbk we can compute that∫∫
R2

(λ− 2D cosh(2πbk)− x2N − C(1 + |x|2N−ε))+ dk dx

≤ 4

∫ ∞
0

∫ ∞
0

(λ−De2πbk − x2N − C(1 + x2N−ε))+ dk dx

=
2

πb

∫ ∞
D

∫ ∞
0

(λ− u− x2N − C(1 + x2N−ε))+
u

dxdu .

Substituting v1λ = u and v2λ
1/(2N) = x we obtain

∫∫
R2

(λ− 2D cosh(2πbk)− x2N − C(1 + |x|2N−ε))+ dk dx

≤ 2λ
2N+1
2N

πb

∫ ∞
D/λ

∫ ∞
0

(1− v1 − v2N2 − Cλ−1 − Cv2N−ε2 λ−
ε

2N )+
v1

dv2 dv1 .

Note that the domain of integration can be restricted to v2 ≥ 0 and 1 − v1 − v2N2 − Cλ−1 −
Cv2N−ε2 λ−

ε
2N ≥ 0. We now use that (a − b)+ ≤ a+ + |b| for any a, b ∈ R to split the integral

into two parts∫∫
R2

(λ− 2D cosh(2πbk)− x2N − C(1 + |x|2N−ε))+ dk dx

≤ 2λ
2N+1
2N

πb

(∫ 1

D/λ

∫ ∞
0

(1− v1 − v2N2 )+
v1

dv2 dv1

+ |C|
∫ ∞
D/λ

∫
v2≥0,1−v1−v2N2 −Cλ−1−Cλ− ε

2N v2N−ε
2 ≥0

λ−1 + v2N−ε2 λ−
ε

2N

v1
dv2 dv1

)
.
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The first integral yields the correct leading order term. To prove this, we first compute the inner

integral explicitly

2λ
2N+1
2N

πb

∫ 1

D/λ

∫ ∞
0

(1− v1 − v2N2 )+
v1

dv2 dv1 =
2

πb

2N

2N + 1
λ

2N+1
2N

∫ 1

D/λ

(1− v1)
2N+1
2N

v1
dv1 .

Using partial integration we then observe that∫ 1

D/λ

(1− v1)
2N+1
2N

v1
dv1 = log

( λ
D

)(
1− D

λ

) 2N+1
2N

+
2N + 1

2N

∫ 1

D/λ

(1− v1)
1

2N log v1 dv1 .

It remains to note that∣∣∣∣∣
∫ 1

D/λ

(1− v1)
1

2N log v1 dv1

∣∣∣∣∣ =

∫ 1

D/λ

(1− v1)
1

2N log
( 1

v1

)
dv1 ≤

(
1− D

λ

) 1
2N
(

1− D

λ
− D

λ
log
( λ
D

))
to establish the asymptotic behaviour

2λ
2N+1
2N

πb

∫ 1

D/λ

∫ ∞
0

(1− v1 − v2N2 )+
v1

dv2 dv1 =
2

πb

2N

2N + 1
λ

2N+1
2N log λ+O(λ

2N+1
2N )

as λ→∞. For the second integral, we use that for sufficiently large λ

1− v1 − v2N2 − Cλ−1 − Cv2N−ε2 λ−
ε

2N ≤ 2− v1 −
1

2
v2N2

and that∫ ∞
D/λ

∫
v2≥0,2−v1− 1

2v
2N
2 ≥0

λ−1 + v2N−ε2 λ−
ε

2N

v1
dv2 dv1 ≤ λ−

ε
2N

∫ 2

D/λ

∫ 21/N

0

5

v1
dv2 dv1

≤ 10λ−
ε

2N (log λ− logD + log 2)

since λ−1+
ε

2N + v2N−ε2 ≤ 5 on the domain of integration for sufficiently large λ. Putting everything

together and using that limλ→∞(λ
2N+1−ε

2N log λ)/λ
2N+1
2N = 0 since ε > 0, we obtain that∫∫

R2

(λ− 2D cosh(2πbk)− x2N − C(1 + |x|2N−ε))+ dk dx

≤ 2

πb

2N

2N + 1
λ

2N+1
2N log λ+O(λ

2N+1
2N )

as λ → ∞. Similarly, we can use the fact that 2 cosh(2πbk) ≤ 2e2πbk for k > 0 together with the

substitution u = 2De2πbk to obtain the lower bound∫∫
R2

(λ− 2D cosh(2πbk)− x2N − C(1 + |x|2N−ε))+ dk dx

≥ 4

∫ ∞
0

∫ ∞
0

(λ− 2De2πbk − x2N − C(1 + x2N−ε))+ dk dx

=
2

πb

∫ ∞
2D

∫ ∞
0

(λ− u− x2N − C(1 + x2N−ε))+
u

dxdu ,

and by similar arguments as above∫∫
R2

(λ− 2D cosh(2πbk)− x2N − C(1 + |x|2N−ε))+ dk dx

≥ 2

πb

2N

2N + 1
λ

2N+1
2N log λ+O(λ

2N+1
2N )
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as λ→∞. Together with the upper bound, we obtain that∫∫
R2

(λ− 2 cosh(2πbk)− x2N − C(1 + |x|2N−ε))+ dk dx

=
2

πb

2N

2N + 1
λ

2N+1
2N log λ+O(λ

2N+1
2N ) .

(3)

Similarly, we can show that as λ→∞∫∫
λ−2D cosh(2πbk)−x2N−C(1+|x|2N−ε)≥0

dk dx =
2

πb
λ

1
2N log λ+ o(λ

1
2N log λ) .

3. The Proof of Theorems 2 and 4

To establish upper and lower bounds on the sum of the eigenvalues we will employ ideas from [6],

with the Fourier transform replaced by the coherent state transform, which we will introduce below.

Let gβ be the Gaussian function gβ(x) = (β/π)1/4e−
β
2 x

2

with some β > 0, fixed for the moment.

Clearly gβ satisfies ‖gβ‖2 = 1 in L2(R). For ψ ∈ L2(R) the classical coherent state transform is given

by

ψ̃(k, y) =

∫
R

e−2πikxgβ(x− y)ψ(x) dx = 〈ψ, ek,y〉 (4)

where ek,y = e2πikgβ(x− y). Following the computations in [8], we can show that∫∫
R2

dβ2 cosh(2πk)|ψ̃(k, y)|2 dk dy =

∫
R

(H0ψ)(x)ψ(x) dx

where dβ = e−βb
2/4 < 1. A standard computation furthermore shows that∫

R2

W (y)|ψ̃(k, y)|2 dk dy =

∫
R

(W ∗ g2β)(x)|ψ(x)|2 dx .

For convenience, we set Wβ := W ∗g2β . Note that Wβ ∈ C(R) with infx∈RWβ(x) ≥ infx∈RW (x) since

gβ is non-negative and ‖gβ‖2 = 1. Furthermore, lim|x|→∞Wβ(x) =∞ and thus the statements above

on the self-adjoint extension and discreteness of the spectrum also hold for the operator H0 +Wβ .

We now establish results for the special case of a hyperbolic cosine potential as well as monomial

potentials. In [8, Section 2.1] we proved the following.

Proposition 8. Let b > 0. Then

(2 cosh(2πbx) ∗ g2β)(x) =
1

cβ
2 cosh(2πbx)

where cβ = e−(πb)
2/β. Conversely,

2 cosh(2πbx) = (cβ2 cosh(2πbx) ∗ g2β)(x) .

An analogous result holds for monomials.

Proposition 9. Let N ∈ N. Then

(x2N ∗ g2β)(x) = x2N + pN (x)

where pN (x) =
∑N−1
j=0

1
βN−j aN,jx

2j is an even polynomial of order 2N−2 with coefficients aN,j ∈ R+

independent of β. Conversely,

x2N =
(
(x2N + qN ) ∗ g2β

)
(x)

where qN (x) =
∑N−1
j=0

1
βN−j bN,jx

2j is an even polynomial of order 2N − 2 with coefficients bN,j
independent of β.
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Furthermore, for 0 < ε ≤ 2N − 1 it holds that

(|x|2N−ε ∗ g2β)(x) ≤ cε,N (1 + |x|2N−ε)

with some constant cε,N ≥ 0 depending on β and conversely

|x|2N−ε ≤ (|x|2N−ε ∗ g2β)(x) .

Proof. Writing ∫
R

(x− y)2Ngβ(y)2 dy =

2N∑
k=0

(
2N

k

)
xk
∫
R
y2N−kgβ(y)2 dy

and noting that the integral vanishes for odd k, we compute that∫
R

(x− y)2Ngβ(y)2 dy =

N∑
j=0

(
2N

2j

)
x2j
∫
R
y2N−2jgβ(y)2 dy = x2N +

(2N)!

22NβN

N−1∑
j=0

4jβj

(N − j)!(2j)!
x2j

which yields the first result. The second statement then follows by induction from the observations

that by the first identity

x2 = (x2 ∗ g2β)(x)− 1

2β
=
(
(x2 − 1/(2β)) ∗ g2β

)
(x)

as well as

x2N = (x2N ∗ g2β)(x)− pN (x) = (x2N ∗ g2β)(x)−
N−1∑
j=0

1

βN−j
aN,jx

2j .

Since g2β ≥ 0 and

|x− y|2N−ε ≤ max(2|x|, 2|y|)2N−ε ≤ 22N−ε(|x|2N−ε + |y|2N−ε)

we obtain the bound∫
R
|x− y|2N−εgβ(y)2 dx ≤ 22N−ε

(
|x|2N−ε +

∫
R
|y|2N−εgβ(y)2 dy

)
which yields the claimed inequality. Finally, since x 7→ |x|2N−ε is a convex function for 0 < ε ≤ 2N−1

and ‖gβ‖2 = 1 we can apply Jensen’s inequality to obtain∫
R
|x− y|2N−εgβ(y)2 dy ≥

∣∣∣∣∫
R

(x− y)gβ(y)2 dy

∣∣∣∣2N−ε = |x|2N−ε .

�

3.1. Lower bound on the Riesz mean. In [6] a lower bound on the eigenvalues of a general class

of operators on sets of finite measure with Neumann boundary condition was proved by means of an

argument that relied on the Fourier transform. Here, we use a similar approach, with the coherent

state transform replacing the Fourier transform.

Let ψWj denote the orthonormal eigenfunctions corresponding to the eigenvalues λWj of the operator

H0 +W satisfying the assumptions in Proposition 1. They form a complete set of the Hilbert space

L2(R) and by Plancherel’s theorem it holds that∫∫
R2

|ψ̃Wβ

j (k, y)|2 dk dy =
∥∥∥ψWβ

j

∥∥∥2
2

= 1 . (5)

We can thus write ∑
j≥1

(λ− λWj )+ =
∑
j≥1

(λ− λWj )+

∫∫
R2

|ψ̃j(k, y)|2 dk dy,
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and inserting the definition (4)∑
j≥1

(λ− λWj )+ =

∫∫
R2

∑
j≥1

(λ− λWj )+〈ψWj , ek,y〉〈ψWj , ek,y〉dk dy

=

∫∫
R2

∑
j≥1

(λ− λWj )+
〈
〈ek,y, ψWj 〉ψWj , ek,y

〉
dk dy .

We can replace the sum by an integral with respect to the projection-valued measure dEWµ for H0+W

on R as ∑
j≥1

(λ− λWj )+ =

∫∫
R2

∫
R

(λ− µ)+〈dEWµ ek,y, ek,y〉dk dy .

By the spectral theorem ∫
R
〈dEWµ ek,y, ek,y〉 = 〈ek,y, ek,y〉 = ‖g‖22 = 1,

and thus we can apply Jensen’s inequality with the convex function x 7→ (λ−x)+ to obtain the lower

bound ∑
j≥1

(λ− λWj )+ ≥
∫∫

R2

(
λ−

∫
R
µ〈dEWµ ek,y, ek,y〉

)
+

dk dy . (6)

Finally, by the spectral theorem the inner integral is∫
R
µ〈dEWµ ek,y, ek,y〉 = 〈H0ek,y, ek,y〉+ 〈Wek,y, ek,y〉 .

Following [8] we know

〈H0ek,y, ek,y〉 =
1

dβ
2 cosh(2πk)

and we compute

〈Wek,y, ek,y〉 =

∫
R
W (x)gβ(x− y)2 dx = Wβ(y) .

Combining these two results with (6) we arrive at

∑
j≥1

(λ− λWj )+ ≥
∫∫

R2

(
λ− 1

dβ
2 cosh(2πbk)−Wβ(y)

)
+

dk dy .

3.2. Lower bound for hyperbolic cosine potential. Let λj be the eigenvalues ofH0+2 cosh(2πbx).

In this special case, which was considered in [8], one obtains from the computations above with

W (x) = 2 cosh(2πbx) and from Proposition 8 that

∑
j≥1

(λ− λj)+ ≥
∫∫

R2

(
λ− 1

dβ
2 cosh(2πbk)− 1

cβ
2 cosh(2πby)

)
+

dk dy .

By (2) the asymptotic behaviour of this lower bound does not depend on cβ , dβ and is of the desired

form.
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3.3. Lower bound for polynomial potential. Let λj be the eigenvalues of H0+x2N+r(x). By the

min-max principle, we obtain a lower bound on the Riesz mean if we replace x2N + r(x) by the larger

potential x2N + C(1 + |x|2N−ε). Using the computations above with W (x) = x2N + C(1 + |x|2N−ε)
together with Proposition 9 and the fact that for some 0 < δ ≤ ε both |pN (y)|/(1 + |y|2N−δ) and

(1 + |y|2N−ε)/(1 + |y|2N−δ) are bounded, yields∑
j≥1

(λ− λj)+ ≥
∫∫

R2

(
λ− 1

dβ
2 cosh(2πbk)− y2N − CN (1 + |y|2N−δ)

)
+

dk dy

for some constant CN depending on β. By (3) the asymptotic behaviour of this lower bound does

not depend on CN , dβ and is of the desired form.

3.4. Upper bound on the Riesz mean. Again, we will use a similar approach to [6], where an

upper bound on the eigenvalues of a general class of operators on sets of finite measure with Dirichlet

boundary condition was proved.

Let W be a potential that satisfies the assumptions of Proposition 1. Consider the eigenvalues

λ
Wβ

j of H0 +Wβ where Wβ = W ∗ g2β and let ψ
Wβ

j be the corresponding orthonormal eigenfunctions.

Using the coherent state representations established at the beginning of this section, we can write∑
j≥1

(λ− λWβ

j )+ =
∑
j≥1

(λ− 〈(H0 +Wβ)ψ
Wβ

j , ψ
Wβ

j 〉)+

=
∑
j≥1

(
λ−

∫∫
R2

(
dβ2 cosh(2πbk) +W (y)

)
|ψ̃Wβ

j (k, y)|2 dk dy

)
+

.

By (5) we can apply Jensen’s inequality with the convex function x 7→ (λ− x)+ to obtain∑
j≥1

(λ− λWβ

j )+ ≤
∫∫

R2

(
λ− dβ2 cosh(2πbk)−W (y)

)
+

∑
j≥1

|ψ̃Wβ

j (k, y)|2 dk dy .

The eigenfunctions ψ
Wβ

j form an orthonormal basis in L2(R) and thus for all k, y ∈ R∑
j≥1

|ψ̃Wβ

j (k, y)|2 =
∑
j≥1

|〈ek,y, ψ
Wβ

j 〉|
2 = ‖ek,y‖2 = 1

which yields the upper bound∑
j≥1

(λ− λWβ

j )+ ≤
∫∫

R2

(
λ− dβ2 cosh(2πbk)−W (y)

)
+

dk dy .

3.5. Upper bound for hyperbolic cosine potential. Let λj be the eigenvalues ofH0+2 cosh(2πbx).

In this special case, which was considered in [8], we can choose W (x) = cβ2 cosh(2πbx) such that

Wβ(x) = 2 cosh(2πbx) by Proposition 8. The computation above then yields∑
j≥1

(λ− λj)+ ≤
∫∫

R2

(
λ− dβ2 cosh(2πbk)− cβ2 cosh(2πby)

)
+

dk dy .

By (2) the asymptotic behaviour of this upper bound does not depend on cβ , dβ and is of the desired

form.

3.6. Upper bound for polynomial potential. Let λj be the eigenvalues of H0 + x2N + r(x). By

the min-max principle, we obtain an upper bound on the Riesz mean if we replace x2N + r(x) by the

smaller potential x2N −C(1 + |x|2N−ε). Applying again the min-max principle together with the last

statement in Proposition 9, we may further decrease this potential to x2N −C
(
(1+ |x|2N−ε)∗g2β

)
(x).

By Proposition 9 this potential coincides with Wβ for the choice W (x) = x2N+qN (x)−C(1+|x|2N−ε).
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The computation above and the fact that for some 0 < δ ≤ ε both |qN (y)|/(1 + |y|2N−δ) and

(1 + |y|2N−ε)/(1 + |y|2N−δ) are bounded, yields∑
j≥1

(λ− λj)+ ≤
∫∫

R2

(
λ− dβ2 cosh(2πbk)− y2N + CN (1 + |y|2N−δ)

)
+

dk dy

with a constant CN depending on β. By (3) the asymptotic behaviour of this upper bound does not

depend on CN , dβ and is of the desired form.

4. The Proof of Corollaries 3 and 5

In [8] we provided two proofs of Corollary 3. The first one made use of an observation in [7]

that allows to obtain asymptotics of the traces of convex functions of self-adjoint operators from

the behaviour of their Riesz means. The result is then a consequence of the Karamata–Tauberian

theorem (see e.g. [12, Theorem 10.3]) in a version that allows for logarithmic factors (see e.g. [11]).

The second proof used a more direct approach in estimating the number of eigenvalues below a given

value by Riesz means. Here, we present a proof that is in spirit very close to the latter argument,

but emphasises the role of convexity. The proof method has been used in [1] in a similar context to

our work, but has also been applied previously in a non-linear setting by Lieb and Simon [9], who

give reference to Griffiths [4] for emphasising its use in mathematical physics.

Again, assume that W satisfies the assumptions of Proposition 1 and let λWj denote the discrete

eigenvalues of H0 +W . Note that for any h > 0∑
j≥1

(λ− λWj )+ ≤
∑
j≥1

(λ+ h− λWj )+ − hNW (λ)

where NW (λ) denotes the number of eigenvalues λWj below λ. As a consequence, we obtain the upper

bound

NW (λ) ≤ 1

h

∑
j≥1

(λ+ h− λWj )+ −
∑
j≥1

(λ− λWj )+

 . (7)

To obtain a lower bound we observe that similarly

NW (λ) ≥ 1

h

∑
j≥1

(λ− λWj )+ −
∑
j≥1

(λ− h− λWj )+

 . (8)

4.1. Proof for hyperbolic cosine potential. The result can be proved analogously to the case of

polynomial potentials, for which details are presented below.

4.2. Proof for polynomial potential. Let λj be the eigenvalues of H0 +x2N + r(x). By Theorem

4 there are constants C1, C2 such that∑
j≥1

(λ− λj)+ ≤
2

πb

(
2N

2N + 1
λ

2N+1
2N log λ+ C1λ

2N+1
2N

)
and ∑

j≥1

(λ− λj)+ ≥
2

πb

(
2N

2N + 1
λ

2N+1
2N log λ+ C2λ

2N+1
2N

)
for all sufficiently large λ. Inserting these bounds into (7) and noting that due to the convexity of

the function f(x) = x
2N+1
2N log x for x > 1 necessarily f(λ + h) − f(λ) ≤ hf ′(λ + h), we obtain the

upper bound

N(λ)
2
πbλ

1
2N log λ

≤
(λ+ h)

1
2N log(λ+ h) + 2N

2N+1 (λ+ h)
1

2N

λ
1

2N log λ
+
C1(λ+ h)

2N+1
2N − C2λ

2N+1
2N

hλ
1

2N log λ
.
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Choosing h = (ρ− 1)λ with ρ > 1 and letting λ→∞ yields

lim sup
λ→∞

N(λ)
2
πbλ

1
2N log λ

≤ ρ 1
2N

and since ρ > 1 was arbitrary

lim sup
λ→∞

N(λ)
2
πbλ

1
2N log λ

≤ 1 .

Similarly, we can use the convexity of f(x) = x
2N+1
2N log x for x > 1 to conclude that f(λ)−f(λ−h) ≥

hf ′(λ− h) and thus obtain the upper bound

N(λ)
2
πbλ

1
2N log λ

≥
(λ− h)

1
2N log(λ− h) + 2N

2N+1 (λ− h)
1

2N

λ
1

2N log λ
+
C2λ

2N+1
2N − C1(λ− h)

2N+1
2N

hλ
1

2N log λ
.

from (8). Choosing h = (1− ρ)λ with ρ < 1 and letting first λ→∞ and subsequently ρ→ 1 yields

lim inf
λ→∞

N(λ)
2
πbλ

1
2N log λ

≥ 1 .
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