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WEYL TYPE ASYMPTOTICS AND BOUNDS FOR THE
EIGENVALUES OF FUNCTIONAL-DIFFERENCE

OPERATORS FOR MIRROR CURVES

Ari Laptev, Lukas Schimmer and

Leon A. Takhtajan

Abstract. We investigate Weyl type asymptotics of functional-difference operators
associated to mirror curves of special del Pezzo Calabi-Yau threefolds. These opera-
tors are H(ζ) = U +U−1 +V +ζV −1 and Hm,n = U +V +q−mnU−mV −n, where U

and V are self-adjoint Weyl operators satisfying UV = q2V U with q = eiπb2 , b > 0
and ζ > 0, m,n ∈ N. We prove that H(ζ) and Hm,n are self-adjoint operators with
purely discrete spectrum on L2(R). Using the coherent state transform we find the
asymptotical behaviour for the Riesz mean

∑
j≥1(λ − λj)+ as λ → ∞ and prove

the Weyl law for the eigenvalue counting function N(λ) for these operators, which
imply that their inverses are of trace class.

1 Introduction

Let P and Q be quantum-mechanical momentum and position operators on L2(R),
satisfying on their common domain the Heisenberg commutation relation [P, Q] = iI.
Consider the corresponding Weyl operators U = e−bP and V = e2πbQ, where b > 0.
The operators U and V are unbounded self-adjoint operators on L2(R), satisfying
on their common domain the Weyl relation

UV = q2V U,

where q = eiπb2 . In the coordinate representation (Pψ)(x) = iψ′(x) and (Qψ)(x) =
xψ(x), and the Weyl operators have the form (Uψ)(x) = ψ(x + ib) and (V ψ)(x) =
e2πbxψ(x). Their respective domains are

D(U) =
{

ψ ∈ L2(R) : e−2πbkψ̂(k) ∈ L2(R)
}

,

D(V ) =
{

ψ ∈ L2(R) : e2πbxψ(x) ∈ L2(R)
}

,

where F is the Fourier transform

ψ̂(k) = (Fψ)(k) =
∫

R

e−2πikxψ(x) dx

on L2(R). Equivalently, D(U) consists of those functions ψ(x) which admit an an-
alytic continuation to the strip {z = x + iy ∈ C : 0 < y < b} such that ψ(x + iy) ∈
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L2(R) for all 0 ≤ y < b and there is a limit ψ(x + ib − i0) = limε→0+ ψ(x + ib − iε)
in the sense of convergence in L2(R), which we will denote simply by ψ(x + ib). The
domain of U−1 can be characterized similarly.

Using the Weyl operators U and V , one constructs the operator

H = U + U−1 + V,

which in the coordinate representation becomes a functional-difference operator

(Hψ)(x) = ψ(x + ib) + ψ(x − ib) + e2πbxψ(x).

The operator H first appeared in the study of the quantum Liouville model on
the lattice [FT86] and plays an important role in the representation theory of the
non-compact quantum group SLq(2,R). In the momentum representation it becomes
the Dehn twist operator in quantum Teichmüller theory [Kas01]. In particular, in
[Kas01] the eigenfunction expansion theorem for H in the momentum representa-
tion was stated as formal completeness and orthogonality relations in the sense of
distributions.

The spectral analysis of the functional-difference operator H was done in [TF14].
The operator H was shown to be self-adjoint with a simple absolutely continuous
spectrum [2, ∞), and the eigenfunction expansion theorem for H, generalizing the
classical Kontorovich-Lebedev transform, was proved.

It was discovered in [ADKMV06] that the functional-difference operators built
from the Weyl operators U and V , also appear in the study of local mirror symmetry
as a quantization of an algebraic curve, the mirror to a toric Calabi-Yau threefold.
The spectral properties of these operators were considered in [GHM14]. The typical
example is a so-called local del Pezzo Calabi-Yau threefold, a total space of the
anti-canonical bundle on a toric del Pezzo surface S. In the simplest case of the
Hirzebruch surface S = P

1 × P
1 one gets the following operator

H(ζ) = e−bP + ebP + e2πbQ + ζe−2πbQ = U + U−1 + V + ζV −1 , (1)

where ζ > 0 is a “mass” parameter, so that H = H(0). In case S is a weighted
projective space P(1, m, n), m, n ∈ N, the corresponding operator is

Hm,n = e−bP + e2πbQ + ebmP−2πbnQ = U + V + q−mnU−mV −n, (2)

and H = H1,0 (see [GHM14] for details). It was conjectured in [GHM14] for the cases
ζ > 0 and m, n ∈ N that these operators have a discrete spectrum, their inverses
are of trace class and their Fredholm determinants can be explicitly evaluated in
terms of enumerative invariants of the underlying Calabi-Yau threefolds. In a recent
paper [KM15] some of these conjectures were proved and the authors obtained a
remarkable explicit formula for the operators H(ζ)−1 and H−1

m,n in terms of the
modular quantum dilogarithm.

The present paper is devoted to the study of Weyl type asymptotics for the
operators H(ζ) and Hm,n as self-adjoint operators on L2(R). Namely, we prove that
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they are operators with purely discrete spectrum and investigate the asymptotic
behavior of their eigenvalues, from which it immediately follows that H(ζ)−1 and
H−1

m,n are of trace class. Our main results are Theorems 2.2 and 3.1 on the asymptotic
behaviour of the Riesz mean

∑
j≥1(λ−λj)+ and Corollaries 2.3 and 3.2 on the Weyl

law for the eigenvalue counting function N(λ) for these operators. Namely,

lim
λ→∞

N(λ)
log2 λ

=
1

(πb)2
(3)

for the operator H(ζ) and

lim
λ→∞

N(λ)
log2 λ

=
cm,n

(2πb)2
, cm,n =

(m + n + 1)2

2mn
(4)

for the operator Hm,n. The proof follows ideas developed in [Lap97], where the
Fourier transform is replaced by the coherent state transform. The applied methods
also mimic the derivation of the Berezin–Lieb inequality [Ber72a,Ber72b,L73].

2 The Operator H(ζ)

Let H0 = U + U−1 and W (ζ) = V + ζV −1 so that H(ζ) = H0 + W (ζ) and formally
(
H(ζ)ψ

)
(x) = ψ(x + ib) + ψ(x − ib) + (e2πbx + ζe−2πbx)ψ(x) .

It is straightforward to show that FH0F
−1 = W , where we put W = W (1), which

yields σ(H0) = [2, ∞) and consequently H ≥ 2I. The operator H(ζ) is semi-bounded
and symmetric on the common domain of H0 and W (ζ),

〈H(ζ)ψ, ψ〉 = 〈ψ, H(ζ)ψ〉 ≥ 2‖ψ‖2,
where 〈 , 〉 stands for the inner product in L2(R). Thus we can define a self-adjoint
Friedrichs extension of the operator H(ζ) (see e.g. [BS87, Chapter 10.3]). It is this
extension that we mean when we refer to the operator H(ζ). We first show that the
spectrum of H(ζ) is purely discrete.

Proposition 2.1. Let L(x) be a continuous, real-valued, bounded below function
such that L(x) tends to +∞ as |x| → ∞. Then the operator T = H0 + L has purely
discrete spectrum consisting of finite multiplicity eigenvalues tending to +∞.

Proof. Indeed, by using the variational principle and the Birman–Schwinger principle
we have

dim {ψ : 〈Tψ, ψ〉 < λ〈ψ, ψ〉}

≤ dim
{

ψ : 〈H0ψ, ψ〉 −
(
λ ‖ψ‖2 − 〈Lψ, ψ〉

)

+
< 0

}

= dim
{
ψ : 〈WλH−1

0 Wλψ, ψ〉 > 1
}

,
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where Wλ =
√

(λ − L)+. The operator Kλ = WλH−1
0 Wλ is an integral operator

(Kλψ)(x) =
∫ ∞

−∞

∫ ∞

−∞
Wλ(x)

e2πi(x−y)k

2 cosh(2πbk)
Wλ(y)ψ(y) dk dy.

Since L(x) tends to +∞ as |x| → ∞, the support of Wλ is compact. Therefore
Kλ is a compact operator and this proves that its spectrum above one is finite. This
implies that the spectrum of T below λ is also finite for any fixed λ > 0.

Clearly T cannot have finite rank since it is the sum of two unbounded positive
operators. Therefore the spectrum of the operator T is discrete. 
�

Let λ1 ≤ λ2 ≤ · · · denote the eigenvalues of H(ζ) with the corresponding
complete system of orthonormal eigenfunctions ψj ∈ L2(R). We are interested in
the asymptotic behaviour of the Riesz mean

∑
j≥1(λ − λj)+ as λ → ∞. Here

x+ = (|x| + x)/2 is defined as the positive part of a real number x. Our main
result is the following.

Theorem 2.2. For any ζ > 0 the eigenvalues λj of the operator H(ζ) have the
following asymptotic behaviour

∑

j≥1

(λ − λj)+ =
λ log2 λ

(πb)2
+ O(λ log λ) as λ → ∞. (5)

The following is an immediate consequence of Theorem 2.2.

Corollary 2.3. For any b > 0 the number N(λ) = # {j ∈ N : λj < λ} of eigen-
values of H(ζ) less than λ satisfies

lim
λ→∞

N(λ)
log2 λ

=
1

(πb)2
.

In particular, the operator H(ζ)−1 is of trace class since
∞∑

j=1

1
λj

=
∫ ∞

2

1
λ

dN(λ) =
N(λ)

λ

∣
∣
∣
∣

∞

2

+
∫ ∞

2

N(λ)
λ2

dλ < ∞.

Remark 2.4. Theorem 2.2 and Corollary 2.3 are Weyl type results that link the
asymptotical behaviour of quantum mechanical expressions to classical phase space
integrals. Namely, let

σ(k, x) = 2 cosh(2πbk) + e2πbx + ζe−2πbx

be the total symbol of the operator H(ζ). Then the term log2 λ/(πb)2 is precisely the
leading term of the phase volume of the classical region {(k, x) ∈ R

2 : σ(k, x) ≤ λ}
as λ → ∞. Similarly, λ log2 λ/(πb)2 coincides with the leading term in the phase
space integral

∫∫

R2

(λ − σ(k, x))+ dk dx as λ → ∞.
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To prove Theorem 2.2, we establish lower and upper bounds on the Riesz mean∑
j≥1(λ − λj)+ in Sections 2.2 and 2.3 respectively. To this end we introduce the

coherent state representation of H(ζ). To simplify notation and to keep focus on the
arguments involved, we concentrate on the case ζ = 1, where W = 2 cosh(2πbx).
Subsequently, we will be using notation H = H0 + W , not to be confused with the
operator H0 + V . The general case ζ > 0 is a straightforward generalization, as is
explained in Section 2.5.

2.1 The coherent state representation. Let g be the Gaussian function
g(x) = (a/π)1/4e− a

2
x2

with some a > 0. Clearly g satisfies ‖g‖ = 1 in L2(R). For
ψ ∈ L2(R) the classical coherent state transform (see e.g. [LL01, Chapter 12]) is
given by

ψ̃(k, y) =
∫

R

e−2πikxg(x − y)ψ(x) dx .

Denoting by (f∗g)(x)=
∫
R

f(x−y)g(y) dy the convolution of f and g, Plancherel’s
theorem shows that

∫

R

|ψ̃(k, y)|2 dk = (|ψ|2 ∗ |g|2)(y) , (6)
∫

R

|ψ̃(k, y)|2 dy = (|ψ̂|2 ∗ |ĝ|2)(k) . (7)

The proof of the second identity also uses the convolution theorem.
We aim to find representations of 〈H0ψ, ψ〉 and 〈Wψ, ψ〉 in terms of coherent

states. It follows from (7) that
∫∫

R2

2 cosh(2πbk)|ψ̃(k, y)|2 dk dy =
∫∫

R2

2 cosh(2πbk)|ψ̂(k − q)|2|ĝ(q)|2 dk dq,

and using

cosh(x + y) = cosh x cosh y + sinhx sinh y

we obtain
∫∫

R2

2 cosh(2πbk)|ψ̃(k, y)|2 dk dy

=
∫∫

R2

2 cosh
(
2πb(k − q)

)|ψ̂(k − q)|2 cosh(2πbq)|ĝ(q)|2 dk dq

+
∫∫

R2

2 sinh
(
2πb(k − q)

)|ψ̂(k − q)|2 sinh(2πbq)|ĝ(q)|2 dk dq .

Recalling that FH0F
−1 = W , the first integral on the right-hand side can be

computed to be 1
2〈H0ψ, ψ〉〈Wĝ, ĝ〉. Since g(x) = g(−x), it holds that ĝ(k) = ĝ(−k)
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and consequently the second integral vanishes. Thus for ψ ∈ D(H0) we obtain the
representation

〈H0ψ, ψ〉 = d1

∫∫

R2

2 cosh(2πbk)|ψ̃(k, y)|2 dk dy (8)

where

d1 =
2

〈Wĝ, ĝ〉 = e−ab2/4 < 1.

Similarly, we can use (6) to compute that
∫∫

R2

2 cosh(2πby)|ψ̃(k, y)|2 dk dy =
∫∫

R2

2 cosh(2πby)|ψ(y − q)|2|g(q)|2 dy dq,

which with the help of the same trigonometric identity as above can be simplified to
∫∫

R2

2 cosh(2πby)|ψ̃(k, y)|2 dk dy =
1
2
〈Wψ, ψ〉〈Wg, g〉.

Thus for ψ ∈ D(W ) we have the representation

〈Wψ, ψ〉 = d2

∫∫

R2

2 cosh(2πby)|ψ̃(k, y)|2 dk dy, (9)

where

d2 =
2

〈Wg, g〉 = e−(πb)2/a < 1.

Summarizing, we obtain

〈Hψ, ψ〉 =
∫∫

R2

2(d1 cosh(2πbk) + d2 cosh(2πby))|ψ̃(k, y)|2 dk dy. (10)

2.2 Deriving an upper bound. We apply ideas that were used in [Lap97] in
investigation of the upper bounds on the eigenvalues of a general class of operators on
sets of finite measure with Dirichlet boundary condition. While these results relied
on the representation of the operators in Fourier space, we will use the representation
in terms of the coherent states.

As a reminder, λj denote the eigenvalues of H and ψj the corresponding orthonor-
mal eigenfunctions which form a complete set. We first observe that representation
(10) yields
∑

j≥1

(λ − λj)+ =
∑

j≥1

(λ − 〈Hψj , ψj〉)+

=
∑

j≥1

(

λ −
∫∫

R2

2
(
d1 cosh(2πbk) + d2 cosh(2πby)

)|ψ̃j(k, y)|2 dk dy

)

+

.
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By Plancherel’s theorem it holds that
∫∫

R2

|ψ̃j(k, y)|2 dk dy = ‖ψj‖2 = 1 (11)

and consequently we can apply Jensen’s inequality with the convex function x →
(λ − x)+ to obtain
∑

j≥1

(λ − λj)+ ≤
∫∫

R2

(
λ − 2d1 cosh(2πbk) − 2d2 cosh(2πby)

)
+

∑

j≥1

|ψ̃j(k, y)|2 dk dy.

Put ek,y(x) = e2πikxg(x − y). Since the eigenfunctions ψj form an orthonormal
basis in L2(R),

∞∑

j=1

|ψ̃j(k, y)|2 =
∞∑

j=1

|〈ek,y, ψj〉|2 = ‖ek,y‖2 = 1 for all k, y ∈ R,

and we arrive at the upper bound
∑

j≥1

(λ − λj)+ ≤
∫∫

R2

(
λ − 2d1 cosh(2πbk) − 2d2 cosh(2πby)

)
+

dk dy .

To investigate the behaviour of the integral on the right-hand side as λ → ∞,
we first note that

∑

j≥1

(λ − λj)+ ≤ 4
∫ ∞

0

∫ ∞

0

(
λ − 2d1 cosh(2πbk) − 2d2 cosh(2πby)

)
+

dk dy

≤ 4
∫ ∞

0

∫ ∞

0

(
λ − d1e2πbk − d2e2πby

)
+

dk dy ,

where we used that 2 cosh x > ex for x > 0. Changing the variables u1 = d1e2πbk,
u2 = d2e2πby we arrive at

∑

j≥1

(λ − λj)+ ≤ 1
(πb)2

∫ ∞

d1

∫ ∞

d2

(λ − u1 − u2)+
u1u2

du2 du1

=
1

(πb)2

∫ λ−d2

d1

∫ λ−u1

d2

λ − u1 − u2

u1u2
du2 du1 ,

where λ ≥ d1 + d2 since λ ≥ 2 and d1, d2 ≤ 1. Now we immediately obtain
∫ λ−d2

d1

∫ λ−u1

d2

λ − u1 − u2

u1u2
du2 du1 = λ

∫ 1−d2/λ

d1/λ

∫ 1−v1

d2/λ

1 − v1 − v2
v1v2

dv2 dv1

= λ log2 λ + O(λ log λ)

as λ → ∞, so that
∑

j≥1

(λ − λj)+ ≤ λ log2 λ

(πb)2
+ O(λ log λ).
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2.3 Deriving a lower bound. To obtain a lower bound, we use a different
argument. The ideas in this section are again taken from [Lap97], where a lower
bound on the eigenvalues of a general class of operators on sets of finite measure with
Neumann boundary condition was obtained. Similarly to the previous subsection,
the coherent state transform will replace the Fourier transform.

Recalling (11), we start from the identity
∑

j≥1

(λ − λj)+ =
∑

j≥1

(λ − λj)+
∫∫

R2

|ψ̃j(k, y)|2 dk dy,

and observing that

ψ̃j(k, y) =
∫

R

ψj(x)ek,y(x) dx = 〈ψj , ek,y〉,

we obtain
∑

j≥1

(λ − λj)+ =
∫∫

R2

∑

j≥1

(λ − λj)+〈ψj , ek,y〉〈ψj , ek,y〉dk dy

=
∫∫

R2

∑

j≥1

(λ − λj)+
〈〈ek,y, ψj〉ψj , ek,y

〉
dk dy .

Denoting by dEμ the projection-valued measure for H on [2, ∞), we conclude
that

∑

j≥1

(λ − λj)+ =
∫∫

R2

∫ ∞

2
(λ − μ)+〈dEμek,y, ek,y〉dk dy .

Since by the spectral theorem
∫ ∞

2
〈dEμek,y, ek,y〉 = 〈ek,y, ek,y〉 = ‖g‖2 = 1,

we can apply Jensen’s inequality with the convex function x → (λ − x)+ and obtain
the lower bound

∑

j≥1

(λ − λj)+ ≥
∫∫

R2

(

λ −
∫ ∞

2
μ〈dEμek,y, ek,y〉

)

+

dk dy . (12)

Again it follows from the spectral theorem that
∫ ∞

2
μ〈dEμek,y, ek,y〉 = 〈Hek,y, ek,y〉 = 〈H0ek,y, ek,y〉 + 〈Wek,y, ek,y〉 .

The two terms on the right-hand side can be computed explicitly. We first con-
sider 〈Hek,y, ek,y〉 and note that

g(x − y ± ib) = e
ab2

2 g(x − y)e∓a(x−y)ib,
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whence

〈H0ek,y, ek,y〉 =
∫

R

(
e−2πbkg(x − y + ib) + e2πbkg(x − y − ib)

)
g(x − y) dx

= e
ab2

2

(

e−2πbk

∫

R

g(z)2e−iabz dz + e2πbk

∫

R

g(z)2eiabz dz

)

=
1
d1

2 cosh(2πbk) .

For the second term, 〈Wek,y, ek,y〉, we get

〈Wek,y, ek,y〉 =
∫

R

2 cosh(2πbx)g(x − y)2 dx

=
∫

R

2 cosh
(
2πb(x − y)

)
cosh(2πby)g(x − y)2 dx

+
∫

R

2 sinh
(
2πb(x − y)

)
sinh(2πby)g(x − y)2 dx

=
1
d2

2 cosh(2πby) .

Combining these two results with (12) we arrive at

∑

j≥1

(λ − λj)+ ≥
∫∫

R2

(

λ − 2
d1

cosh(2πbk) − 2
d2

cosh(2πby)
)

+

dk dy

= 4
∫ ∞

0

∫ ∞

0

(

λ − 2
d1

cosh(2πbk) − 2
d2

cosh(2πby)
)

+

dk dy .

Note that 2 cosh x ≤ 2ex for x ≥ 0 and thus

∑

j≥1

(λ − λj)+ ≥ 4
∫ ∞

0

∫ ∞

0

(

λ − 2
d1

e2πbk − 2
d2

e2πby

)

+

dk dy .

The integral on the right-hand side is computed in the same way as in the pre-
vious section. The only difference is that the numbers d1, d2 have been replaced by
2/d1, 2/d2. These coefficients have no influence on the leading term for large λ as
long as λ ≥ 2/d1 + 2/d2, and we conclude

∑

j≥1

(λ − λj)+ ≥ 1
(πb)2

λ log2 λ + O(λ log λ) as λ → ∞.

2.4 The number of eigenvalues. We present two proofs of Corollary 2.3. One
uses the Karamata–Tauberian theorem [K31] to deduce it from Theorem 2.2, while
the other consists in obtaining the optimal bounds for N(λ) from the Riesz mean.
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2.4.1 Proof of Corollary 2.3 with the Karamata–Tauberian Theorem. The
Karamata–Tauberian theorem (for the proof see, e.g. [Sim05, Theorem 10.3]) con-
nects the asymptotic behaviour of N(λ) for large λ to the divergence of tr e−tH for
small t. In [Lap99] a general method was discussed that allows to obtain asymptotics
of the traces of convex functions of self-adjoint operators from the behaviour of their
Riesz means. Namely, from the representation

e−tλ = t2
∫

R

(s − λ)+e−ts ds

for λ ≥ 0 and asymptotic behaviour (5) we get the upper bound

tr e−tH = t2
∫ ∞

0

∑

j≥1

(s − λj)+e−ts ds

≤ t2

(πb)2

∫ ∞

0
s(log s)2e−ts ds + t2C

∫ ∞

0
s(log s)e−ts ds

with some constant C > 0, as well as a similar lower bound with a different constant.
The two integrals on the right-hand side are computed explicitly and we obtain

lim
t→0

tr e−tH

log2 t
=

1
(πb)2

.

A slight modification of the Karamata–Tauberian theorem that allows for loga-
rithmic terms [Sim83] implies that

lim
λ→∞

N(λ)
log2 λ

=
1

(πb)2
.

2.4.2 Direct Proof of Corollary 2.3. To derive an upper bound on N(λ), we let
μ ≥ ρ > 0 and note the that

∑

j≥1

(μ − λj)+ =
∑

λj<μ

(μ − λj) ≥
∑

λj<μ−ρ

(μ − λj) > ρN(μ − ρ).

We can now use asymptotic behaviour (5) of the Riesz mean to conclude that
there exists a C > 0 such that

N(μ − ρ) ≤ μ log2 μ

ρ(πb)2
+

C

ρ
μ log μ .

With τ > 0 we now choose μ = (1 + τ)λ and ρ = τλ such that μ − ρ = λ and

N(λ) ≤ 1
(πb)2

(

1 +
1
τ

)
(
log2(λ + λτ) + C log(λ + λτ)

)
.
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It remains to optimize this upper bound with respect to τ > 0. The minimum is
attained at τ0 defined by the equation

2τ0 = log(λ + λτ0) .

Since 2τ − log(1 + τ) is bijective as a function from [0, ∞) to [0, ∞), a unique
solution τ0 exists for every λ. It clearly holds that τ0 → ∞ as λ → ∞ and thus
τ0 ≤ log λ for sufficiently large λ. We can conclude that

lim sup
λ→∞

N(λ)
log2 λ

≤ 1
(πb)2

.

To find an analogous lower bound we note that again by (5) for λ ≥ 2

N(λ) ≥
∑

j≥1

(

1 − λj

λ

)

+

=
1
λ

∑

j≥1

(λ − λj)+ ≥ log2 λ

(πb)2
+ C log λ

with some constant C > 0.

2.5 The general case ζ > 0. It is straightforward to generalize the proof of
Theorem 2.2 to any ζ > 0. The coherent state representation of W (ζ) = V + ζV −1

can be computed to be

〈W (ζ)ψ, ψ〉 = d2

∫∫

R2

(e2πby + ζe−2πby)|ψ̃(k, y)|2 dk dy

for ψ ∈ D(W (ζ)). Repeating calculations of Section 2.2 leads to an upper bound of
the Riesz mean

∑
j≥1(λ − λj)+, which can be written as a sum of four integrals of

the form
∫ ∞
0

∫ ∞
0 (λ − c1e2πbk − c2e2πby)+ dk dy. The asymptotic behaviour of these

integrals was discussed in Section 2.2. A lower bound of the Riesz mean can be
established by repeating verbatim the computations in Section 2.3, which proves
Theorem 2.2 and Corollary 2.3 for ζ > 0.

3 The Operator Hm,n

The operator Hm,n = U + V + q−mnU−mV −n is given by the following formal
functional-difference expression

(Hm,nψ)(x) = ψ(x + ib) + e2πbxψ(x) + q−mne−2πnbxψ(x − mib) .

The operator Hm,n is symmetric and non-negative on the domain ψ ∈ D consist-
ing of linear combinations of the functions p(x)e−x2+cx, where p(x) is a polynomial
and c ∈ C. Indeed, for ψ ∈ D it follows from the Weyl relation

U−mṼ −n = qmnṼ −nU−m, where Ṽ = V 1/2 = eπbQ,

that
q−mn〈U−mV −nψ, ψ〉 = 〈U−mṼ −nψ, Ṽ −nψ〉 ≥ 0. (13)
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Whence Hm,n admits a Friedrichs extension and in what follows we will continue to
denote it by Hm,n. The spectrum of this operator consists of positive eigenvalues λj

that converge to infinity, limj→∞ λj = ∞. The proof of this statement is deferred
to the end of Section 3.1 since it makes use of the coherent state representation of
Hm,n.

Theorem 3.1. For m, n ∈ N the eigenvalues λj of the operator Hm,n have the
following asymptotic behaviour

∑

j≥1

(λ − λj)+ =
cm,m

(2πb)2
λ log2 λ + O(λ log λ) as λ → ∞,

where cm,n =
(m + n + 1)2

2mn
.

Having established Theorem 3.1, the exact same argument as in Section 2.4
proves the following corollary.

Corollary 3.2. The number N(λ) = # {j ∈ N : λj < λ} of eigenvalues of Hm,n

less than λ satisfies

lim
λ→∞

N(λ)
log2 λ

=
cm,n

(2πb)2
.

In particular, this implies that the operator H−1
m,n is of trace class since

∞∑

j=1

1
λj

=
∫ ∞

λ1

1
λ

dN(λ) =
N(λ)

λ

∣
∣
∣
∣

∞

λ1

+
∫ ∞

λ1

N(λ)
λ2

dλ < ∞.

Remark 3.3. As in Remark 2.4, the term cm,n log2 λ/(2πb)2 is precisely the leading
term as λ → ∞ of the phase volume of the classical region {(k, x) ∈ R

2 : e−2πbk +
e2πbx + e2πb(mk−nx) ≤ λ}. Similarly, the term cm,nλ log2 λ/(2πb)2 coincides with the
leading term in the phase space integral

∫∫

R2

(λ − e−2πbk − e2πbx − e2πb(mk−nx))+ dk dx as λ → ∞.

As in Section 2, we first obtain a representation of Hm,n using the coherent state
transform and then prove the upper and lower bounds. The computations will closely
follow those in Sections 2.1, 2.2 and 2.3, and we will just highlight the main points.

3.1 The coherent state representation. Let ψ̃ again denote the coherent
state transform of a function ψ ∈ L2(R) with respect to the Gaussian function
g. In complete analogy with Section 2.1, identity (7), together with the facts that
U = F−1V −1F and e−2πbk = e−2πb(k−q)e2πbq, leads to the representation

〈Uψ, ψ〉 = d1

∫∫

R2

e−2πbk|ψ̃(k, y)|2 dk dy .
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Here, we have used the symmetries of the functions involved to conclude that

1
〈V −1ĝ, ĝ〉 =

2
〈Wĝ, ĝ〉 = d1 .

Similarly,

〈U−mψ, ψ〉 = dm2

1

∫∫

R2

e2πbmk|ψ̃(k, y)|2 dk dy .

In the same way identity (6) yields the representation

〈V ψ, ψ〉 = d2

∫∫

R2

e2πby|ψ̃(k, y)|2 dk dy ,

where we have used that

1
〈V g, g〉 =

1
〈V −1g, g〉 =

2
〈Wg, g〉 = d2 ,

since g is even.
To derive of the representation of the mixed term q−mnU−mV −n we use (13) to

get

q−mn〈U−mV −nψ, ψ〉 = 〈U−mψ1, ψ1〉 = dm2

1

∫∫

R2

e2πbmk|ψ̃1(k, y)|2 dk dy,

where ψ̃1(k, y) is the coherent state transform of the function ψ1(x) = (Ṽ −nψ)(x) =
e−πbnxψ(x). Completing the square, we obtain

ψ̃1(k, y) =
∫

R

e−2πikxg(x − y)e−πbnxψ(x) dx = e
(πnb)2

2a
−πbny ψ̃

(
k, y − πnb

a

)
,

so that

q−mn〈U−mV −nψ, ψ〉 = dm2

1 e
(πnb)2

a

∫∫

R2

e2πb(mk−ny)|ψ̃ (
k, y − πnb

a

) |2 dk dy

= dm2

1 dn2

2

∫∫

R2

e2πb(mk−ny)|ψ̃(k, y)|2 dk dy.

Summarizing, we obtain the coherent state representation of the operator Hm,n,

〈Hm,nψ, ψ〉
=

∫∫

R2

(
d1e−2πbk + d2e2πby + d3e2πb(mk−ny)

)
|ψ̃(k, y)|2 dk dy, (14)

where we put d3 = dm2

1 dn2

2 .
Using representation (14), we can now prove that the spectrum of Hm,n is dis-

crete.
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Proposition 3.4. The operator Hm,n satisfies Hm,n > cI, where the constant c > 0
depends on m, n ∈ N, and has purely discrete spectrum consisting of finite multi-
plicity positive eigenvalues tending to infinity.

Proof. According to (14), the quadratic form of the operator Hm,n is

〈Hm,nψ, ψ〉 =
∫∫

R2

Ψ(k, y)|ψ̃(k, y)|2 dk dy,

where

Ψ(k, y) = d1e−2πbk + d2e2πby + d3e2πbmke−2πbny. (15)

If k ≤ 0 and y ≥ 0, then omitting the last term in (15) we obtain

Ψ(k, y) ≥ d1
2

(e−πbk + eπbk) +
d2
2

(eπby + e−πby).

If k ≥ 0 and y ≤ 0, then

e2πbmke−2πbny ≥ 1
2

(
e2πbmk + e−2πbny

)

and therefore

Ψ(k, y) ≥ d1e−2πbk + d2e2πby +
d3
2

(
e2πbmk + e−2πbny

)
.

Consider the case k ≥ 0, y ≥ 0. Assume that βmk ≥ ny, where β < 1. Then

e2πbmke−2πbny ≥ e2πbm(1−β)k.

If now k ≥ 0, y ≥ 0 and βmk ≤ ny, then we omit the last term in (15) and use

e2πby ≥ 1
2

(
e2πby + eβmn−1k

)
.

Similarly we treat the case k ≤ 0, y ≤ 0. Finally we conclude that there are
positive constants c1 and c2 such that

Ψ(k, y) > Φ(k, y) := c1

(
e−c2k + ec2k + e−c2y + ec2y

)
. (16)

Denote by A the operator defined by the quadratic form

〈Aψ, ψ〉 :=
∫∫

R2

Φ(k, y)|ψ̃(k, y)|2 dk dy.

Then (16) implies Hm,n > A and it follows from the Plancherel theorem that
A ≥ cI, where c = 4c1. Obviously due to Proposition 2.1 the spectrum of A is
discrete. By the min-max principle we can conclude that the same holds for the
spectrum of Hm,n and the proof is complete. 
�
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3.2 Deriving an upper bound. Repeating the computation in Section 2.2
and using Jensen’s inequality we obtain

∑

j≥1

(λ − λj)+ ≤
∫∫

R2

(
λ − d1e−2πbk − d2e2πby − d3e2πb(mk−ny)

)

+
dk dy .

To find an upper bound on the right-hand side, we separately consider all four
quadrants of R2.

If k ≤ 0, y ≥ 0, an upper bound is obtained by omitting the mixed term
d3e2πb(mk−ny). The double integral is then of the same form as the upper bound
in Section 2.2 and its leading term as λ → ∞ is λ log2 λ/(2πb)2.

If k ≥ 0, y ≤ 0, we omit two exponentially decaying terms d1e−2πbk and d2e2πby.
Changing variables u1 = d3e2πbmk and u2 = e−2πbny, we obtain the double integral

1
mn(2πb)2

∫ λ

d3

∫ λ/u1

1

λ − u1u2

u1u2
du2 du1 =

λ log2 λ

2mn(2πb)2
+ O(λ log λ) (17)

as λ → ∞, which can be easily verified by direct computation.
In case k ≥ 0, y ≥ 0 we omit the term d1e−2πbk and changing variables u1 =

d3e2πb(mk−ny) and u2 = d2e2πby yields the integral

1
m(2πb)2

∫ λ̃

d2

∫ λ−u2

d4/un
2

λ − u1 − u2

u1u2
du1 du2 , (18)

where d4 = d3d
n
2 and λ̃ is the root of equation λ = d4u

−n
2 + u2. It is easy to

see that for λ → ∞ one can replace λ̃ by λ and obtain the leading term (n +
2)λ log2 λ/2m(2πb)2. The case k ≤ 0, y ≤ 0 is treated similarly with the leading
term (m + 2)λ log2 λ/2n(2πb)2.

Summarizing, we arrive at the estimate
∑

j≥1

(λ − λj)+ ≤ cm,n

(2πb)2
λ log2 λ + O(λ log λ) .

3.3 Deriving a lower bound. To derive a lower bound we repeat computa-
tions in Section 2.3. Denoting the projection-valued measure of Hm,n on [0, ∞) by
dFμ, we obtain upon an application of Jensen’s inequality that

∑

j≥1

(λ − λj)+ ≥
∫∫

R2

(

λ −
∫ ∞

0
μ〈dFμek,y, ek,y〉

)

+

dk dy

for λ ≥ 0. The spectral theorem implies that
∫ ∞

0
μ〈dFμek,y, ek,y〉 = 〈Hm,nek,y, ek,y〉

= 〈Uek,y, ek,y〉 + 〈V ek,y, ek,y〉 + q−mn〈U−mV −nek,y, ek,y〉 .
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The three inner products on the right-hand side can be computed explicitly and
we get the inequality

∑

j≥1

(λ − λj)+ ≥
∫∫

R2

(

λ − 1
d1

e−2πbk − 1
d2

e2πby − 1
d3

e2πb(mk−ny)

)

+

dk dy .

To obtain a lower bound on the right-hand side, we again consider separately all
four quadrants of R2.

If k ≤ 0, y ≥ 0 we make the integrand smaller by replacing e2πb(mk−ny) with
e2πby. The resulting double integral is of the form discussed in Section 2.2 and its
leading term as λ → ∞ is λ log2 λ2/(2πb)2.

In case k ≥ 0, y ≤ 0, we decrease the right-hand side by replacing both e−2πbk

and e2πby with e2πb(mk−ny). This yields a double integral of the same form as (17)
with the leading term λ log2 λ/2mn(2πb)2.

For k ≥ 0, y ≥ 0 we bound e−2πbk from above by 1. The integral takes the same
form as (18) with λ replaced by λ − 1/d1. This does not affect the asymptotical
behaviour (n + 2)λ log2 λ/2m(2πb)2 as λ → ∞.

The last case, k ≤ 0, y ≤ 0, yields the leading term (m+2)λ log2 λ/2n(2πb)2 and
we conclude that

∑

j≥1

(λ − λj)+ ≥ cm,n

(2πb)2
λ log2 λ + O(λ log λ) .

The proof of Theorem 3.1 is complete.
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