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WEIGHTED CLR TYPE BOUNDS IN TWO DIMENSIONS

RUPERT L. FRANK, ARI LAPTEV, AND LARRY READ

Abstract. We derive weighted versions of the Cwikel–Lieb–Rozenblum in-
equality for the Schrödinger operator in two dimensions with a nontrivial
Aharonov–Bohm magnetic field. Our bounds capture the optimal dependence
on the flux and we identify a class of long-range potentials that saturate our
bounds in the strong coupling limit. We also extend our analysis to the two-
dimensional Schrödinger operator acting on antisymmetric functions and ob-
tain similar results.

1. Introduction and main results

The celebrated Cwikel–Lieb–Rozenblum (CLR) inequality states that the num-
ber Np´Δ ´ V q of negative eigenvalues, including multiplicity, of a Schrödinger
operator ´Δ ´ V in L2pRdq in dimension d ě 3 is bounded by

(1) Np´Δ ´ V q Àd

ż

Rd

V pxq
d{2
` dx

where the implied constant is independent of V . Here and throughout we take
a˘ :“ maxp0,˘aq and use a subscript on À to specify the variables on which the
implied constant depends. The inequality is due to M. Cwikel [7], E. Lieb [24] and
G. Rozenbljum [27]. For further proofs and background we direct the reader to [12].
The bound is saturated in the strong coupling limit, that is where V is replaced
with λV and λ Ñ 8, since by Weyl’s asymptotics,

(2) lim
λÑ8

λ´d{2Np´Δ ´ λV q “
ωd

p2πqd

ż

Rd

V pxq
d{2
` dx,

where ωd is the volume of the unit ball in Rd. One of the uses of (1) is to extend
this asymptotic behavior, which is originally established for instance for continuous
V of compact support, to all V with V` P Ld{2pRdq. Concerning the repulsive part
one only needs to assume V´ P L1

locpRdq [10].
Building on earlier work for radial potentials by V. Glaser, H. Grosse and A. Mar-

tin [13], the CLR inequality was generalised by Y. Egorov and V. Kondratiev in [8]
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to include the weighted bounds

(3) Np´Δ ´ V q Àd,α

ż

Rd

V pxq
pd`αq{2
` |x|

α dx,

which hold in dimensions d ě 3 for any α ą 0. In [5], M. Birman and M. Solomyak
showed that the strong Lp norm appearing on the right in (3) can be replaced by
a weak norm, namely

(4) Np´Δ ´ V q Àd,α sup
tą0

tpd`αq{2
ż

|x|2V pxq`ąt

dx
|x|d

,

which is valid, again, in dimensions d ě 3 with α ą 0. Note that the bounds (3)
and (4) are homogeneous with respect to V of degree pd ` αq{2 ą d{2, in contrast
to the homogeneity d{2 of (1). The latter homogeneity is consistent with (2).
Nevertheless, as shown by M. Birman and M. Solomyak [2], the asymptotic order
of growth pd`αq{2 in (4) can be saturated in the strong coupling limit for a class of
potentials with particular long range behaviour. Namely, if V` P L

d{2
loc pRdq satisfies

(5) V pxq “ |x|
´2

| ln |x}
´1{p

p1 ` op1qq as |x| Ñ 8

for some p ą d{2, then one can show that
lim
λÑ8

λ´pNp´Δ ´ λV q exists and is finite,

while for α ą 0 with p “ pd ` αq{2,

lim
λÑ8

λ´p sup
tą0

tpd`αq{2
ż

λ|x|2V pxq`ąt

dx
|x|d

“ sup
tą0

tp
ż

|x|2V pxq`ąt

dx
|x|d

P p0,8q.

All the results discussed so far are restricted to the case of dimensions d ě 3
and most of their direct analogues in dimensions d “ 2 fail. For instance, none
of the direct analogues of (1), (3) and (4) hold. Moreover, there are examples of
V P L1pR2q with V ě 0 for which either the limit on the left side of (2) is infinite
or it is finite but different from the right side, see [4]. Recently, there has been a
lot of activity in proving bounds on Np´Δ ´ V q in d “ 2 and in giving necessary
and sufficient conditions for either the bound limλÑ8 λ´1Np´Δ ´λV q ă 8 or the
validity of (2). A sample of references for this development is [14,16,20,21,26,29].
An earlier fundamental paper is due to M. Solomyak [30]; see also [11].

In this paper we are concerned with bounds on the number of negative eigen-
values of two-dimensional Schrödinger operators in the presence of an Aharonov–
Bohm magnetic field. We will see that when this field is nontrivial, one obtains
inequalities that are analogous to those discussed above for Schrödinger operators
in dimensions d ě 3 and see that the difficulties of the two-dimensional case mostly
disappear. We will also consider the case of the non-magnetic Schrödinger operator
restricted to antisymmetric functions and see that this case is similar to that of an
Aharonov–Bohm magnetic field.

Our results support the heuristics that the different behaviour in dimensions d ě

3 and in d “ 2 comes from a spectral instability of the two-dimensional Laplacian
near energy zero and that this instability can be removed by additional repulsion,
either in the form of a magnetic field or the presence of symmetries. For other
instances of this principle see [19, 22].

To be more specific, let
Apxq “ |x|

´2
px2,´x1q for all x “ px1, x2q P R

2
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and for Φ P R let
DΦ “ ´i∇ ` ΦA .

We consider the magnetic Schrödinger operators

D2
Φ ´ V in L2

pR
2
q .

As discussed in the next section, under suitable conditions on V this operator can
be realized as a self-adjoint operator via the closure of the corresponding quadratic
form on C8

0 pR2zt0uq. When Φ P Z, the magnetic potential can be gauged away
and the operator is unitarily equivalent to ´Δ ` V . Therefore, in the following we
will concentrate on the case Φ P RzZ.

An analogue of the CLR inequality (1) was shown by A. Balinsky, W. Evans and
R. Lewis [1], namely,

(6) NpD2
Φ ´ V q ÀΦ

ż 8

0
sup
ωPS

V prωq`r dr.

More recently it was deduced in [22] that when V` is radially non-increasing one
can replace the supremum over angles in the right side of (6) with an integral, that
is,

(7) NpD2
Φ ´ V q ÀΦ

ż

R2
V pxq` dx.

However, it is known [1] that this replacement cannot be made for general V P

L1pR2q.
Our main result is the following magnetic version of (3).

Theorem 1. Let Φ P RzZ and α ą 0. Then there is a constant CΦ,α ă 8 such
that

(8) NpD2
Φ ´ V q ď CΦ,α

ż

R2
V pxq

1`α{2
` |x|

α dx

for all V P L1
locpR2q for which the right side is finite. Moreover, the optimal

constant in this inequality satisfies

(9) CΦ,α „α dpΦq
´1´α

with dpΦq :“ minkPZ |Φ ´ k|.

In fact, our proof yields the explicit upper bound

(10) CΦ,α ď
Γpp1 ` αq{2q

4π3{2Γp1 ` α{2q

ÿ

nPZ

|n ´ Φ|
´1´α .

From this bound we immediately obtain the upper bound CΦ,α Àα dpΦq´1´α in (9).
In the proof of Theorem 1 we will show that this bound is sharp, thereby obtaining
the precise divergence of the constant as the flux Φ approaches an integer value.

We complement Theorem 1 with a variant of this bound with a weak norm.

Corollary 2. Let Φ P RzZ and α ą 0. Then there is a constant C 1
Φ,α ă 8 such

that

(11) NpD2
Φ ´ V q ď C 1

Φ,α sup
tą0

t1`α{2
ż

|x|2V pxq`ąt

dx
|x|2
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for all V P L1
locpR2q for which the right side is finite. Moreover, the constant can

be chosen to satisfy
(12) C 1

Φ,α „α dpΦq
´1´α .

Since
sup
tą0

t1`α{2
ż

|x|2V pxq`ąt

dx
|x|2

ď

ż

R2
V pxq

1`α{2
` |x|

α dx ,

the bound (8) follows from (11) and for the sharp constants we find
(13) CΦ,α ď C 1

Φ,α .

We will argue differently, however, and deduce Corollary 2 from Theorem 1. To
do this, we use an interpolation argument in the spirit of one of M. Birman and
M. Solomyak [5].

In further likeness to the situation for ´Δ ´ V in dimensions d ě 3, we derive
examples of potentials with the same long-range behaviour (5) that saturate the
weak inequality (11) in the strong coupling limit. We refer to Section 4 for the
details. There we will show, in particular,

(14) C 1
Φ,α ě

Γpp1 ` αq{2q

4π3{2Γp1 ` α{2q

ÿ

nPZ

|n ´ Φ|
´1´α ,

which should be compared with (10). Of course, these two bounds are consistent
with (13).

We note that in [17], Kovař́ık considers the two-dimensional Schrödinger operator
with a general, nontrivial, magnetic potential A P L2

locpR2;R2q. Under minimal
assumptions on A it is determined that for any α ą 0

Npp´i∇ ` Aq
2

´ V q ÀA,α

ż

R2
V pxq

1`α{2
` p1 ` |x|q

α dx .

This bound is similar to ours, but does not include it, for our A “ ΦA is not locally
integrable around the origin. If one could adapt the argument to include our A,
then a scaling argument could be used to remove the extra 1 in the weight and
one would obtain a bound of the form (8). Our analysis has the merit of yielding
tighter constants through a more direct proof, as well as establishing the optimal
constant-flux relationship.

Next, we describe our results for two-dimensional Schrödinger operators acting
on antisymmetric functions. For functions V on R2 that are symmetric in the sense
that V px1, x2q “ V px2, x1q for almost every x P R

2 we can consider the operator
´Δ ´ V in L2pR2q restricted to antisymmetric functions, that is, in the Hilbert
space

L2
aspR

2
q “ tu P L2

pR
2
q : upx1, x2q “ ´upx2, x1q for almost every x P R

2
u .

We denote the resulting operator by ´ Δas ´V . Under the assumption that V
is radially non-increasing, a corresponding version of the CLR inequality for this
operator was found in [22], namely

Np´ Δas ´V q À

ż

R2
V pxq` dx.

However, this inequality does not hold for general V , as noted in [22, Remark 1].
Our second pair of main results are strong and weak weighted CLR bounds for

´ Δas ´V , analogous to the bounds we derived for the magnetic operator.
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Theorem 3. Let α ą 0, then there is a constant Cα ă 8 such that

Np´ Δas ´V q ď Cα

ż

R2
V pxq

1`α{2
` |x|

α dx(15)

for all symmetric V P L1
locpR2q for which the right side is finite.

In fact, our proof yields the explicit upper bound

(16) Cα ď
Γpp1 ` αq{2q

2π3{2Γp1 ` α{2q
ζp1 ` αq ,

where ζ is the Riemann zeta function.
Corollary 4. Let α ą 0, then there is a constant C 1

α ă 8 such that

(17) Np´ Δas ´V q ď C 1
α sup

tą0
t1`α{2

ż

|x|2V pxq`ąt

dx
|x|2

for all symmetric V P L1
locpR2q for which the right side is finite.

Again, for long-range potentials of the form (5) the bound in the corollary can
be saturated in the strong coupling limit and one obtains the lower bound

C 1
α ě

Γpp1 ` αq{2q

2π3{2Γp1 ` α{2q
ζp1 ` αq .

Our plan for the paper is as follows: In Section 2 we present the proof of The-
orems 1 and 3. In Section 3 we derive the weak forms of the inequalities above.
Finally, in Section 4 we will show that these bounds are saturated in the strong
coupling limit by potentials with long range behaviour (5).

2. Proof of theorems 1 and 3

2.1. The Aharonov–Bohm operator. We begin by showing that the operators
D2

Φ ´ V are well-defined in quadratic form sense when Φ P RzZ and V is such that
the right side in either Theorem 1 or Corollary 2 is finite. The main ingredient in
this argument is the magnetic Hardy–Sobolev inequality

(18)
ż

R2
|DΦu|

2 dx ě SΦ,q

ˆ
ż

R2

|u|q

|x|2
dx

˙2{q

for all u P C8
0 pR

2
zt0uq ,

with SΦ,q ą 0 provided that q P r2,8q. A proof of this inequality can be found in
[6, Section 3.1, Step 1] based on the diamagnetic inequality and a special case of the
Caffarelli–Kohn–Nirenberg inequality for scalar functions. Alternatively, one can
deduce this inequality using the method of [8]. In the special case q “ 2 inequality
(18) with sharp constant is due to [23] and reads

(19)
ż

R2
|DΦu|

2 dx ě dpΦq
2

ż

R2

|u|2

|x|2
dx .

Some results about the sharp constant in (18) for q ą 2 can be found in [6].
Let us show how to use (18) to define the operator D2

Φ ´ V . We combine (18)
with Hölder’s inequality to obtain for u P C8

c pR2zt0uq

ż

R2
V`|u|

2 dx ď

ˆ
ż

R2
V

1`α{2
` |x|

α dx
˙1{p1`α{2q ˆ

ż

R2

|u|q

|x|2
dx

˙2{q

ď S´1
Φ,q

ˆ
ż

R2
V

1`α{2
` |x|

α dx
˙1{p1`α{2q ż

R2
|DΦu|

2 dx ,(20)
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where q and α are related by 1{p1 ` α{2q ` 2{q “ 1. The assumption q ă 8 is
equivalent to α ą 0.

Now given V P L1
locpR2q such that the integral in Theorem 1 is finite and given

ε ą 0, we decompose V` “ V1 ` V2 with V2 P L8pR2q and V1 ě 0 satisfying
ż

R2
V

1`α{2
1 |x|

α dx ď ε.

Applying (20) with V1 we find that V` is form-bounded with respect to D2
Φ`V´

with relative form bound zero. This allows us to define D2
Φ ´ V as a selfadjoint,

lower semibounded operator in L2pR2q with form core C8
c pR2zt0uq.

Meanwhile, let V P L1
locpR2q be given such that the integral in Corollary 2 is finite

and let ε ą 0. We choose q̃ P pq,8q and define α̃ ą 0 by 1{p1 ` α̃{2q ` 2{q̃ “ 1. We
can decompose V` “ V1 ` V2 with }|x|2V2}L8pR2q ď ε and V1 ě 0 satisfying

ż

R2
V

1`α̃{2
1 |x|

α̃ dx ă 8 .

(Indeed, we can simply take V1 “ |x|´2p|x|2V` ´ εq` and apply the layer cake
representation; refer to Section 3.) Proceeding as before to control the V1 piece
and using (19) to control the V2 piece, we find again that V` is form-bounded with
respect to D2

Φ`V´ with relative bound zero and, consequently, that D2
Φ ´ V is

well-defined.
Next, we recall that the operators D2

Φ ´V and D2
Φ´k ´V are unitarily equivalent

for k P Z and that the operators D2
Φ ´V and D2

´Φ ´V are antiunitarily equivalent;
see, e.g., [6, Subsection 2.1]. Thus, in what follows we can restrict ourselves to the
case Φ P p0, 1{2s.

We are now ready to present the proof of the weighted CLR bound for D2
Φ ´ V .

Proof of Theorem 1. Fix α ą 0 and let V`|x|2 P L1`α{2pR2; dx{|x|2q. As explained
above, we may assume Φ P p0, 1{2s. Moreover, by the variational principle, we may
assume V ě 0. According to (20) the Birman–Schwinger operator V 1{2pD2

Φq´1V 1{2

is well-defined and bounded. Changing to polar coordinates and logarithmic vari-
ables, this operator becomes rV

1{2
` p´B2

t ` piBθ ´ Φq2q´1
rV

1{2
` in L2pR ˆ S

1q, where
rV pt, θq “ e2tV pet cos θ, et sin θq .

Applying the Birman–Schwinger principle (see, e.g., [12, Subsection 4.3.3]) and
the Lieb–Thirring inequality (see [25] and also [12, Theorem 4.59]) we obtain that
for p “ 1 ` α{2 ą 1

NpD2
Φ ´ V q ďn`p1, rV

1{2
` p´B

2
t ` piBθ ´ Φq

2
q

´1
rV

1{2
` q

ď Trp rV
1{2

` p´B
2
t ` piBθ ´ Φq

2
q

´1
rV

1{2
` q

p

ď Trp rV
p{2

` p´B
2
t ` piBθ ´ Φq

2
q

´p
rV
p{2

` q.

(21)

To compute the trace we need to find the integral kernel of the operator p´B2
t `

piBθ´Φq2q´p, which we denote by GΦ,ppt, θ; τ, ϑq. We note that p´B2
t `piBθ´Φq2q in

L2pRˆSq is unitarily equivalent, via a continuous and a discrete Fourier transform,
to multiplication by ξ2 ` pn ´ Φq2 in L2pRq ˆ �2pZq. Thus,

GΦ,ppt, θ; τ, ϑq “
1

p2πq2

ÿ

nPZ

ż

R

einpθ´ϑqeiξpt´τq

pξ2 ` pn ´ Φq2qp
dξ .
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Given that Φ P p0, 1{2s and p ą 1 the above sum converges. Moreover, gΦ,p :“
GΦ,ppt, θ; t, θq is independent of t and θ and we compute that

gΦ,p “
Γpp ´ 1{2q

4π3{2Γppq

ÿ

nPZ

|n ´ Φ|
1´2p

“
Γpp1 ` αq{2q

4π3{2Γp1 ` α{2q

ÿ

nPZ

|n ´ Φ|
´1´α .

Returning to the estimate in (21) we conclude that

Trp rV
p{2

` p´B
2
t ` piBθ ´ Φq

2
q

´p
rV
p{2

` q “ gΦ,p

ż

R

ż π

´π

rV pt, θq
p
` dθ dt

“ gΦ,p

ż

R2
V pxq

p
`|x|

2p´2 dx ,

which completes the proof of (8) with the constant given in (10). This easily implies
the upper bound in (9). The lower bound is a consequence of Remark 6. �

Remark 5. Despite employing a non-unitary transformation into logarithmic coor-
dinates, the bound in (21) can be derived from the operator’s form core image and
an application of Glazman’s Lemma. We refer to [12, Proposition 7.4] for a similar
statement.

Remark 6. A standard argument shows that the sharp constants in the CLR-type
inequality (8) and in the magnetic Hardy-Sobolev inequality (18) satisfy

(22) SΦ,q ě C
´2{pα`2q

Φ,α with 2
α ` 2

`
2
q

“ 1 ,

see e.g. [12, Proposition 5.7]. In particular, (10) implies that

SΦ,q ě

˜

Γp1{2 ` 2{pq ´ 2qq

4π3{2Γp1 ` 2{pq ´ 2qq

ÿ

nPZ

|n ´ Φ|
´1´4{pq´2q

¸´pq´2q{q

and the upper bound in (9) implies that

(23) SΦ,q Áq dpΦq
1`2{q .

Let us show that this bound is optimal, that is,

(24) SΦ,q Àq dpΦq
1`2{q .

In view of (22) this will prove the lower bound in (9) and thereby complete the
proof of Theorem 1.

We fix ϕ P C8
c pRq and define

upr cos θ, r sin θq “ ϕppln rq{�q einθ ,

where n P Z is such that dpΦq “ |n´Φ|. Then, by (18) after changing to logarithmic
coordinates,

�´1
ż

R

|ϕ1
ptq|

2 dt ` dpΦq
2�

ż

R

|ϕptq|
2 dt ě SΦ,q

ˆ

�

ż

R

|ϕptq|
q dt

˙2{q

.

Choosing � “ dpΦq´1 we obtain (24).
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2.2. The antisymmetric operator. The same construction and arguments carry
over to the antisymmetric operator. In this case, the Hardy–Sobolev inequalities
(18) are replaced by the inequalities
(25)

ż

R2
|∇u|

2 dx ě Sq

ˆ
ż

R2

|u|q

|x|2
dx

˙
2
q

for all antisymmetric u P C8
c pR

2
zt0uq

with Sq ą 0 provided that q P r2,8q. A proof of this inequality can be found in
[15]. In the special case q “ 2 we have

(26)
ż

R2
|∇u|

2 dx ě

ż

R2

|u|2

|x|2
dx for all antisymmetric u P C8

c pR
2
zt0uq

with the sharp constant equal to one.
For symmetric V such that either the right side in Theorem 3 or in Corollary

4 is finite we can define the operators ´ Δas ´V in L2
aspR2q similarly as in the

Aharonov–Bohm case.

Proof of Theorem 3. We fix α ą 0 and take 0 ď V P L1`α{2pR2; dx{|x|2q as be-
fore. The Birman–Schwinger operator V 1{2p´ Δasq´1V 1{2 in L2

aspR2q is unitarily
equivalent to the operator rV 1{2p´B2

t ´ B2
θq´1

rV 1{2 acting in the subspace of function
u P L2pRˆS1q satisfying upt, θq “ ´upt, π{2 ´ θq. Here rV is defined as in the proof
of Theorem 3. Applying the Birman–Schwinger principle and the Lieb–Thirring
inequality as before, we are reduced to finding the integral kernel Gppt, θ; τ, ϑq

corresponding to p´B2
t ´ B2

θq´p acting in this subspace. To find it, we argue as
previously, using a Fourier decomposition in terms of the antisymmetric angular
harmonics ϕnpθq “ π´1{2 sinpnpθ ´ π{4qq, n P N. It follows that

Gppt, θ; t, θq “
1
2π

8
ÿ

n“1
ϕnpθq

2
ż

R

1
pξ2 ` n2qp

dξ

ď
Γpp ´ 1{2q

2π3{2Γppq

˜

8
ÿ

n“1
n1´2p

¸

“
Γpp ´ 1{2q

2π3{2Γppq
ζp2p ´ 1q ,

where ζ denotes the Riemann zeta function. This proves Theorem 3. �

3. Interpolation and proof of corollaries 2 and 4

In this section we derive Corollaries 2 and 4 from Theorems 1 and 3, respectively.
We use a variant of an interpolation argument by Birman and Solomyak [5], but we
avoid any explicit mention of interpolation theory or ideals of compact operators.

Proof of Corollary 2. We fix α ą 0 and recall that we may assume that 0 ă Φ ď

1{2 and that V ě 0. With two parameters s ą 0 and 0 ă θ ă 1 to be determined
we write

D2
Φ ´ V “ θpD2

Φ ´ θ´1s|x|
´2

q ` p1 ´ θqpD2
Φ ´ p1 ´ θq

´1
|x|

´2
p|x|

2V ´ sqq .

Assuming that θ´1s ď Φ2 we can use the magnetic Hardy inequality (19) to bound

D2
Φ ´ V ě p1 ´ θqpD2

Φ ´ p1 ´ θq
´1

|x|
´2

p|x|
2V ´ sq`q .

Thus, by the variational principle

NpD2
Φ ´ V q ď NpD2

Φ ´ p1 ´ θq
´1

|x|
´2

p|x|
2V ´ sq`q .
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For an arbitrary 0 ă β ă α we can apply Theorem 1 and obtain

NpD2
Φ ´ V q ď CΦ,βp1 ´ θq

´1´β{2
ż

R2
p|x|

2V pxq ´ sq
1`β{2
`

dx
|x|2

.

Abbreviating rV s :“ suptą0 t
1`α{2 ş

|x|2V pxqąt
dx

|x|2
and using the layer cake represen-

tation we find
ż

R2
p|x|

2V pxq ´ sq
1`β{2
`

dx
|x|2

“ p1 ` β{2q

ż 8

0

ż

|x|2V pxq´sąσ

dx
|x|2

σβ{2 dσ

ď p1 ` β{2q rV s

ż 8

0
pσ ` sq

´1´α{2 σβ{2 dσ

“
Γp2 ` β{2q Γppα ´ βq{2q

Γp1 ` α{2q
spβ´αq{2

rV s .

In the last computation we used a beta function identity. To minimize this bound,
we choose s “ θΦ2 and obtain

NpD2
Φ ´ V q ď

Φβ´α CΦ,β

sup0ăθă1p1 ´ θq1`β{2θpα´βq{2
Γp2 ` β{2q Γppα ´ βq{2q

Γp1 ` α{2q
rV s .

This bound can still be optimized with respect to β P p0, αq. This proves (11).
Taking a fixed β (say β “ α{2) and recalling that CΦ,β Àβ Φ´1´β by (9), we
deduce the upper bound in (12). The lower bound follows from (13) together with
the lower bound in (9). �

The proof of Corollary 4 is similar to that of Corollary 2 and is omitted.

4. Long-range potentials and behaviour of constants

In this section we construct, for arbitrary α ą 0, potentials V that saturate the
weak bounds (11) and (17) in the strong coupling limit. We follow arguments that
were carried out for dimensions d ě 3 in [2, 3, 18].

Theorem 7. Let Φ P RzZ, let p ą 0 and assume that V P L8pR2q satisfies

V pxq “ |x|
´2

pln |x|q
´1{p

p1 ` op1qq as |x| Ñ 8 .

Then for p ą 1

lim
λÑ8

λ´pNpD2
Φ ´ λV q “

Γpp ´ 1{2q

2
?
πΓppq

ÿ

nPZ

1
|n ´ Φ|2p´1 ,

for p “ 1
lim
λÑ8

pλ lnλq
´1NpD2

Φ ´ λV q “
1
2
,

and for p ă 1
lim
λÑ8

λ´1NpD2
Φ ´ λV q “

1
4π

ż

R2
V pxq` dx .

In the theorem we clearly see the difference between the long range case p ě 1
and the short range case p ă 1. In the former case the asymptotics are insensitive
to the local behavior of V and solely determined by its asymptotic behavior, while
in the latter case they are essentially determined by the local behavior of V .

We note that if V is as in the theorem with p ą 1, then with α “ 2pp ´ 1q

lim
λÑ8

λ´p sup
tą0

t1`α{2
ż

λ|x|2V pxq`ąt

dx
|x|2

“ sup
tą0

tp
ż

|x|2V pxq`ąt

dx
|x|2

P p0,8q .
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Therefore Theorem 7 shows that the weak bounds (11) are saturated for the po-
tentials λV as λ Ñ 8.

Moreover, the asymptotics for p “ 1 show that one cannot expect to have a
version of the weak inequality (11) that is homogeneous of degree one in V .

Remark 8. For comparison, if Φ “ 0 and V is as in Theorem 7 with p ą 1{2 then
Np´Δ ´ λV q “ 8 for all λ ą 0. The same holds for p “ 1{2 provided λ ą 1{4; see
[12, Proposition 4.21].

Proof. We mostly focus on the case p ě 1 and discuss the case p ă 1 at the end.
Let Wp be defined as

Wppxq :“

#

|x|´2pln |x|q´1{p, |x| ą e ,

0, |x| ď e .
(27)

We will prove the theorem for p ě 1 in the special case V “ Wp. By simple
approximation arguments, this implies the result in the general case.

We start by simplifying the problem. Consider the restriction of the operator
D2

Φ ´λWp to the region tx : |x| ą eu with Dirichlet and Neumann boundary condi-
tions, denoted by HD

Φ pλWpq and HN
Φ pλWpq, respectively. Then, since Wp ” 0 for

|x| ď e, by the variational principle,

NpHD
Φ pλWpqq ď NpD2

Φ ´ λWpq ď NpHN
Φ pλWpqq .(28)

It follows, using logarithmic-coordinates r “ et`1 and the definition of Wp, that we
need only estimate the number of negative eigenvalues of the operator

´B
2
t ` piBθ ´ Φq

2
´ λpt ` 1q

´1{p in L2
pp0,8q ˆ S

1
q,

from above and below, where the operator is considered with Neumann and Dirich-
let boundary conditions at t “ 0, respectively.

Now we carry out a further bracketing argument. We fix L ą 0 and for k P

N0 denote by HD
k,LpV q and HN

k,LpV q the restrictions of ´B2
t ` piBθ ´ Φq2 ´ V ptq

to the intervals pkL, pk ` 1qLq with Dirichlet and Neumann boundary conditions
respectively. Then, using ppk ` 1qL ` 1q´1{p ď pt ` 1q´1{p ď pkL ` 1q´1{p on
pkL, pk ` 1qLq,

NpHD
Φ pλWpqq ě

8
ÿ

k“0
NpHD

k,Lpλpt ` 1q
´1{p

qq ě

8
ÿ

k“0
NpHD

k,Lpλppk ` 1qL ` 1q
´1{p

qq

(29)

and

NpHN
Φ pλWpqq ď

8
ÿ

k“0
NpHN

k,Lpλpt ` 1q
´1{p

qq ď

8
ÿ

k“0
NpHN

k,LpλpkL ` 1q
´1{p

qq .(30)

It remains to estimate each of these, where we first consider the case of p ą 1.
Starting with the lower bound, we use (29) to see that

NpHD
Φ pλWpqq ě

8
ÿ

k“0
#tpm,nq P NˆZ : π2m2

L2 `pn´Φq
2

ăλppk`1qL`1q
´1{p

qu

ě

ÿ

mPN,nPZ

´

L´1λp
`

π2m2
{L2

`pn´Φq
2˘´p

´1´L´1
¯

`
“(I)`(II),
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where

(I) “

ÿ

mPN0,nPZ

´

L´1λp
`

π2m2
{L2

` pn ´ Φq
2˘´p

´ 1 ´ L´1
¯

`

ě λp
ÿ

nPZ

ż 8

0

´

`

π2τ2
` pn ´ Φq

2˘´p
´ λ´p

pL ` 1q

¯

`
dτ,

and

(II) “ ´

ÿ

nPZ

`

L´1λp
|n ´ Φ|

´2p
´ 1 ´ L´1˘

`

ě ´L´1λp
ÿ

nPZ

|n ´ Φ|
´2p.

Meanwhile, for the upper-bound (30) we find that

NpHN
Φ pλWpqq ď

8
ÿ

k“0
#tpm,nq P N0 ˆ Z : π2m2

L2 ` pn ´ Φq
2

ă λpkL ` 1q
´1{p

u

“ (III) ` (IV),

where

(III) “ #tpm,nq P N0 ˆ Z : π2m2

L2 ` pn ´ Φq
2

ă λu

ď #tn P Z : pn ´ Φq
2

ă λu `

ÿ

nPZ

π´1L
`

λ ´ pn ´ Φq
2˘1{2

`

ď p2
?
λ ` 1q ` 2π´1Lpλ ´ Φ2

q
1{2
` ` π´1L

ż

R

pλ ´ pt ´ Φq
2
q
1{2
` dt

“ p2
?
λ ` 1q ` 2π´1Lpλ ´ Φ2

q
1{2
` ` 2´1Lλ

and

(IV) “

8
ÿ

k“1
#tpm,nq P N0 ˆ Z : π2m2

L2 ` pn ´ Φq
2

ă λpkL ` 1q
´1{p

u

ď

ÿ

mPN0,nPZ

´

L´1λp
`

π2m2
{L2

` pn ´ Φq
2˘´p

´ L´1
¯

`

ď λp
ÿ

nPZ

ż 8

0

´

`

π2τ2
` pn ´ Φq

2˘´p
´ λ´p

¯

`
dτ.

Taking the limsup and liminf as λ Ñ 8 and then the limit L Ñ 8, we find

lim inf
λÑ8

λ´pNpHD
Φ pλWpqq ě

ÿ

nPZ

ż 8

0

`

π2τ2
` pn ´ Φq

2˘´p dτ

“
Γpp ´ 1{2q

2
?
πΓppq

ÿ

nPZ

1
|n ´ Φ|2p´1 ,

and similarly

lim sup
λÑ8

λ´pNpHN
Φ pλWpqq ď

Γpp ´ 1{2q

2
?
πΓppq

ÿ

nPZ

1
|n ´ Φ|2p´1 .

This proves the claimed limit for p ą 1.
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For the case of p “ 1, we carefully consider the terms that produce a logarithmic
divergence. In this case, the choice of intervals does not matter, so we take L “ 1.
We start by using (29) to find that

NpHD
Φ pλW1qq ě λ

ÿ

mPN,nPZ

´

`

π2m2
` pn ´ Φq

2˘´1
´ 2λ´1

¯

`

ě λ

ż

Rzp´1,1q

ż 8

1

´

`

π2τ2
` pt ´ Φq

2˘´1
´ 2λ´1

¯

`
dτ dt ´ Opλq

ě λp2πq
´1

ĳ

σ2`s2ąR2
1

´

`

σ2
` s2˘´1

´ 2λ´1
¯

`
dσ ds ´ Opλq,

with R2
1 :“ pπ2 ` p1´Φq2q{2. When passing to the last line we increased the region

of integration in the first term, noting that additional integral is Opλq. For the
upper bound (30), in the decomposition above, the term (III) is of order Opλq as
λ Ñ 8, thus we see that

NpHN
Φ pλW1qq ď Opλq ` (IV)

“

ÿ

mPN0,nPZ

#tk P N : k ă λ
`

π2m2
` pn ´ Φq

2˘´1
´ 1u ` Opλq

“ λ
ÿ

mPNzt1u,nPZ

´

`

π2m2
` pn ´ Φq

2˘´1
´ λ´1

¯

`
` Opλq

ď λp2πq
´1

ĳ

σ2`s2ąR2
2

ppσ2
` s2

q
´1

´ λ´1
q` dσ ds ` Opλq

with R2
2 :“ π2 ` p1 ´ Φq2. For R “ R1, R2 we compute

ĳ

σ2`s2ąR2

ppσ2
` s2

q
´1

´ λ´1
q` dσ ds “ 2π

ż

?
λ

R

pr´2
´ λ´1

qr dr “ π lnλ ` Op1q .

This proves the claimed limit for p “ 1.
Finally, we comment on the case p ă 1. We clearly have

lim inf
λÑ8

λ´1NpD2
Φ ´ λV q ě

1
4π

ż

R2
V pxq` dx .(31)

Indeed, for given, sufficiently large R ą 0 we bound V ě V 1p|x| ă Rq (here we
use that V is nonnegative outside of a bounded set) and then impose a Dirichlet
condition at |x| “ R to bound NpD2

Φ ´ λV q from below by the number of negative
eigenvalues of the corresponding Dirichlet operator on t|x| ă Ru. By [11, Corollary
1.2], and the works [9,28], for the latter operator one has Weyl asymptotics. Since
R ą 0 can be chosen arbitrarily large, we obtain (31). Let us explain in some more
detail how to obtain the Weyl asymptotics from references [11] and [9]. In view of
[9, Theorem 2.2] the bound in [11, Theorem 1.1] remains valid in the presence of a
magnetic field, at the expense of an increase of the constant by a universal factor.
With this bound at hand, one can follow the proof of [11, Corollary 1.2] and obtain
the asymptotics in the presence of a magnetic field; see also [10].

To prove

lim sup
λÑ8

λ´1NpD2
Φ ´ λV q ď

1
4π

ż

R2
V pxq` dx ,(32)
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we set, for all Rą1, ĂWppxq“1p|x|ąRq|x|´2pln |x|q´1{p ` 1p|x|ďRqR´2plnRq´1{p.
For 0 ă θ ă 1 and ε ą 0 we decompose

D2
Φ ´λV “ θ

´

D2
Φ ´ θ´1

p1 ` εqλĂWp

¯

` p1´θq

´

D2
Φ ´ p1 ´ θq

´1λpV ´ p1 ` εqĂWpq

¯

and obtain

NpD2
Φ ´ λV q ď NpD2

Φ ´ θ´1
p1 ` εqλĂWpq ` NpD2

Φ ´ p1 ´ θq
´1λpV ´ p1 ` εqĂWpq`q .

Since ĂWp is radially nonincreasing, it results from either (6) or (7) that

NpD2
Φ ´ θ´1

p1 ` εqλĂWpq ÀΦ θ´1
p1 ` εqλ

ż

R2

ĂWp dx ÀΦ,p θ´1
p1 ` εqplnRq

1´1{pλ .

Meanwhile, by assumption there is an Rε ă 8 such that for all |x| ě Rε one
has V pxq ď p1 ` εq|x|´2pln |x|q´1{p. Therefore, the potential pV ´ p1 ` εqĂWpq` is
supported in a ball and with the help of [30] one finds

lim
λÑ8

λ´1NpD2
Φ´p1´θq

´1λpV ´p1`εqĂWpq`q “
1
4π

p1´θq
´1

ż

R2
pV ´p1`εqĂWpq` dx .

Thus, we have shown that

lim sup
λÑ8

λ´1NpD2
Φ ´ λV q

ď
1
4π p1 ´ θq

´1
ż

R2
pV ´ p1 ` εqĂWpq` dx ` CΦ,pθ

´1
p1 ` εqplnRq

1´1{p.

Letting R Ñ 8 using the integrability of V and p ă 1, we obtain

lim sup
λÑ8

λ´1NpD2
Φ ´ λV q ď

1
4π

p1 ´ θq
´1

ż

R2
V` dx .

Since θ P p0, 1q is arbitrary, we obtain (32). This concludes the proof. �

Remark 9. Let us use Theorem 7 to prove the lower bound (12) on C 1
Φ,α. Let α ą 0

and p “ 1 ` α{2 ą 1, then for Wp as in the proof of Theorem 7

lim
λÑ8

λ´p sup
tą0

tp
ż

λWp|x|2ąt

dx
|x|2

“ sup
tą0

tp
ż

Wp|x|2ąt

dx
|x|2

“ 2π,

and thus, by the asymptotic formula in Theorem 7,

C 1
Φ,α ě lim

λÑ8

NpD2
Φ ´ λWpq

suptą0 t
p

ş

λWp|x|2ąt
dx

|x|2

“
Γpα{2 ` 1{2q

4π3{2Γp1 ` α{2q

ÿ

nPZ

|n ´ Φ|
´1´α.

This proves (12).

Finally, we note that the corresponding results hold in the antisymmetric case
by near identical argument. We state them below without proof.

Theorem 10. Let p ě 1 and let V be as in Theorem 7. Then for p ą 1

lim
λÑ8

λ´pNp´ Δas ´λV q “
Γpp ´ 1{2q

2
?
πΓppq

ζp2p ´ 1q

and for p “ 1

lim
λÑ8

pλ lnλq
´1Np´ Δas ´λV q “

1
4
.
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