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We obtain here some inequalities for the eigenvalues of Dirichlet and Neumann
value problems for general classes of operators (or system of operators) acting in
L2(0) (or L2(0, Cm)), 0/Rd, d�1. � 1997 Academic Press

1. INTRODUCTION

Let 0 be an open domain in Rd, d�1, and 0<*1<*2� } } } be the
eigenvalues of the Dirichlet boundary problem for the Laplace operator
&2D in 0. Denote by |0| the Lebesgue measure of the domain 0 and by
Lcl

d =vd (2?)&d=2&d?&d�2�1(1+d�2), where vd is the volume of the unit
ball in Rd. Li and Yau [LY] proved that the eigenvalues *k satisfy the
inequality

*k�
d

d+2
(Lcl

d |0| )&2�d k2�d, \k # N. (1.1)

The constant Lcl
d , the so called ``classical constant,'' appears in the Weyl

asymptotic formula for the counting function of eigenvalues. The proof of
(1.1) is based on a sharp inequality concerning the sum of the first eigen-
values

:
k

j=1

*j�
d

d+2
(Lcl

d |0| )&2�d k1+2�d, \k # N. (1.2)

The constant on the right hand side of (1.2) cannot be improved because
it coincides with the asymptotical constant for the sum in the left hand side
of (1.2) as k � �.
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An opposite inequality can be obtained for the eigenvalues of the Neumann
boundary problem. Let 0=+1<+2� } } } be the eigenvalues of the Neumann
Laplacian &2N in a bounded domain 0 with piecewise smooth boundary.
By adapting the approach of Li and Yau to this problem, Kro� ger [K1]
proved the upper estimate

+k+1�\d+2
d +

2�d

(Lcl
d |0| )&2�d k2�d, \k # N. (1.3)

The key inequality here was the upper estimate for the sum of the first
eigenvalues +j 's

:
k

k=1

+k�
d

d+2
(Lcl

d |0| )&2�d k1+2�d, \k # N.

In this paper we show that the inequalities (1.1) and (1.3) are corollaries
of general (sharp) trace inequalities for convex functions of operators. In
particular, (1.1) and (1.3) can be extended to the Dirichlet and Neumann
boundary problems for various classes of (systems of) differential and pseudo-
differential operators with constant coefficients (for example (&2):, :>0,
operator of classical elasticity, etc). This approach can be also easily extended
to operators acting on functions with values in a Hilbert space. We shall
not consider this case here only because it requires many additional notations
and assumptions.

Notice that the inequality *k�Cd |0|&2�d k2�d with a constant Cd<
d�(d+2)(Lcl

d )&2�d was proved for bounded domains in [BS, C] and later
for arbitrary domains in [R1, 2, M, Lb1] (see also [L]).

G. Po� lya conjectured in [P] that (1.1) should hold without the multi-
plier d�(d+2). He proved this conjecture for ``tiling'' domains 0/R2, i.e.,
copies of 0 fill the plane without gaps. In Subsection 2.3 we notice that
Theorem 2.1 allows us to justify this conjecture for domains 0=01_02/
Rd1_Rd2, d1+d2=d, d1�2, d2�1, as long as the Dirichlet Laplacian in
L2(01) satisfies the Po� lya conjecture and 02 is an arbitrary domain whose
d2 -Lebesgue measure is finite (see Theorem 2.8 and Corollary 2.9).

In [LP] the method of [LY] was applied to the Dirichlet boundary
problem for (systems of) differential operators of a higher order. The method
presented here, however, allows us to obtain the same constants for differential
operators and better constants than in [LP] for systems of differential
operators (see Corollary 2.9 and Remark 2.10).

In Section 4 we obtain some more inequalities on the eigenvalues of
&2D and, in particular, we give an upper bound for the eigenvalues *k ,
assuming only that the spectrum of &2D in L2(0) is discrete.
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In what follows we shall be dealing with different classes of vector
functions on Rd with values in Cm, R+=(0, +�), D=&i���x. By .* we
denote the convex function

.*(t)=(*&t)+={*&t,
0,

t<*,
t�*.

Assuming that a selfadjoint operator B�0 has a discrete spectrum accumulat-
ing at infinity, we denote by N(*, B) its counting function of the spectrum

N(*, B)=*[k : *k<*].

If A is an m_m complex matrix, then A* is its adjoint matrix.

2. DIRICHLET BOUNDARY VALUE PROBLEM

1. Let 0 be an open subset of Rd of finite measure. We shall deal
with various classes of functions with values in Cm, m # N. The norm and
the scalar product in Cm is denoted by & }& and ( } , } ) respectively. Let

L2(0, Cm)={u : |
0

&u(x)&2 dx<�= .

The class of smooth vector valued functions with compact support,
C�

0 (0, Cm)/L2(0, Cm), is dense in L2(0, Cm).
Let A(!) be a complex m_m measurable matrix function, ! # Rd. We

assume for simplicity, that there is } # R+ and a constant C such that

0�&A(!)&�C |!|}, ! # Rd. (2.1)

Let û be the Fourier transform of the vector function u # L2(Rd, Cm). We
introduce a sesquilinear from B0 defined on the vector functions from the
class C �

0 (0, Cm),

B0[u, v]=(2?)&d |
Rd

(A(!) û(!), A(!) v̂(!)) d!

=(2?)&d |
Rd

(B(!) û(!), v̂(!)) d!, u, v # C �
0 (0, Cm), (2.2)

where B(!)=A*(!) A(!). The completion of the class C �
0 (0, Cm) with

respect to the quadratic form B0[u, u]+�0 &u&2 dx, defines a Hilbert
space H[B0]/L2(0, Cm). From (2.1) it follows that the Sobolev space
H }

0(0, Cm) is a subspace of H[B0]. The closed quadratic form B0
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defined on H[B0] gives a selfadjoint ``pseudodifferential operator'' with
constant coefficients which we denote by BD .

If 0=Rd, then the above construction leads to a closed quadratic
form BRd . The selfadjoint operator defined by BRd is denoted by B. Both
operators BD and B can be considered as the Friedrichs extension of the
pseudodifferential operator

B0(D) u(x)=(2?)&d |
Rd

ei(x& y) !B(!) u( y) dy d!

defined on the intersection C �
0 (Rd, Cm) & L2(0, Cm) and C �

0 (Rd, Cm), respec-
tively. We naturally identify the extension BD with Dirichlet boundary
value problem for B in 0.

The next statement deals with a trace type inequality which is a special
case of the Berezin�Lieb inequality (see [Bz1,2, Lb2, S] and for its genera-
lizations [LS]). We include the proof of this statement for the sake of
completeness.

Theorem 2.1. Let 0/Rd be an open set of finite measure, |0|<� and
let the spectrum of the operator BD consist of eigenvalues 0�*1�*2� } } }
such that *k � � as k � �. Then the following inequality holds:

Tr .*(BD )=:
k

(*&*k)+

�(2?)&d |0| |
Rd

Tr(*&(B(!)))+ d!

=(2?)&d |0| |
Rd

Tr .*(B(!)) d!, *>0. (2.3)

Proof. Let |1 , |2 , ... be the orthonormal basis in L2(0, Cm) consisting
of the eigenfunctions of the operator BD whose corresponding eigenvalues
are 0�*1�*2� } } } and let I be the unit matrix in Cm. Then

:
k

(*&*k)+ =:
k

(*&(B0[|k , |k]))+

=:
k \(2?)&d |

Rd
((*I&B(!)) |̂k(!), |̂k(!)) d!++

�(2?)&d :
k
|

Rd
((*I&B(!)) |̂k(!), |̂k(!))+ d!. (2.4)
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Denote by [&j (!)]m
j=1 and [{j (!)]m

j=1 the eigenvalues and the eigenvectors
of the matrix B(!) which are chosen to be measurable. The right hand side
of (2.4) is less or equal than

(2?)&d :
m

j=1

:
k
|

Rd
(*&&j (!))+ |(|̂k(!), {j (!))| 2 d!

=(2?)&d :
m

j=1

:
k
|

Rd
(*&&j (!))+ } |0

(ei(x, !){j (!), |k(x)) dx }
2

d!

=(2?)&d :
m

j=1
|

Rd
(*&&j (!))+ &ei( } , !){j (!)&2

L2(0, Cm) d!

=(2?)&d |0| :
m

j=1
|

Rd
(*&&j (!))+ d!

=(2?)&d |0| |
Rd

Tr((*I&B(!))+) d!.

The proof is complete. K

Remark. The proof of Theorem 2.1 remains almost the same if instead
of Cm we consider an infinite dimensional Hilbert space H.

Definition 2.2. We say that B(!) is a positively homogeneous symbol of
degree :, :>0, if there exists a family of unitary in Cm matrix-functions,
U(*, !), such that

B(*!)=*:U*(*, !) B(!) U(*, !), *>0.

If B(!) is now a homogeneous symbol, then

Tr .*(B(!))=* Tr .1(*&1B(!))

=* Tr .1(U(*&1�:, !) B(*&1�:!) U*(*&1�:, !))

=* Tr .1(B(*&1�:!)).

If we integrate both sides of the last equality with respect to ! and change
the variables *&1�:! � !, then we derive the following statement:

Corollary 2.3. Let B(!) be a positively homogeneous symbol of degree
:. Then under the conditions of Theorem 2.1 we obtain

:
k

(*&*k)+�*1+d�:(2?)&d |0| |
Rd

Tr .1(B(!)) d!, *>0. (2.5)
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Remark 2.4. The constant on the right hand side of (2.5) is the best
possible since it appears in the corresponding asymptotic formula for
�k (*&*k)+, as * � �.

2. We use the results of Subsection 2.1 in order to deduce an upper
estimate for the counting function of the spectrum of the operator BD .

Theorem 2.5. Let 0/Rd be an open set of finite measure, let |0|<�,
and let B(!) be a positively homogeneous symbol of degree :. Then

N(*, BD )�*d�:(2?)&d |0|
d
: \1+

:
d+

1+d�:

|
Rd

Tr .1(B(!)) d!. (2.6)

Proof. Obviously

N('&\, BD )�
1
\ |

�

0
('&&)+ dN(&, BD )

=
1
\

:
k

('&*k)+ , '�\>0.

Therefore Corollary 2.3 implies that

N('&\, BD )�
'1+d�:

\
(2?)&d |0| |

Rd
Tr .1(B(!)) d!.

Choose '=(1+{) * and \={*. Then

N(*, BD )�*d�: (1+{)1+d�:

{
(2?)&d |0| |

Rd
Tr .1(B(!)) d!. (2.7)

The minimum value of (1+{)1+d�: {&1 is reached at {=:�d. By substituting
this value in (2.7) we obtain (2.6). K

Let m=1 and B(!)=|!|:. Then the operator BD coincides with the
operator of Dirichlet boundary problem for (&2):�2. In this case

(2?)&d d
: \1+

:
d+

1+d�:

|
Rd

Tr .1(B(!)) d!=Lcl
d \1+

:
d+

d�:

and we obtain
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Corollary 2.6. Let 0/Rd be an open set of finite measure, |0|<�.
Then

N(*, ((&2):�2)D )�*d�:Lcl
d \1+

:
d+

d�:

|0|. (2.8)

Remark 2.7. If :=2, then (2.8) is equivalent to the inequality (1.1)
proved by Li and Yau in [LY].

3. We show here that in some special cases Theorem 2.1 implies
the Po� lya conjecture.

Theorem 2.8. Let 0=01_02 /Rd1_Rd2, where d1+d2=d, d1�2,
d2�1. Suppose that the operator of the Dirichlet boundary problem in L2(01)
satisfies the Po� lya conjecture and 02 is an arbitrary domain whose d2 -Lebesgue
measure is finite. Then

N(*, &2D)�*d�2Lcl
d |0|, *>0,

or equivalently,

*k�(Lcl
d |0| )&2�d k2�d, k # N.

Proof. Let &2D
j be the Dirichlet Laplacian in 0j , j=1, 2. Since

0=01_02 , the eigenvalues of &2D in 0 are equal to

*lk=\l+'k , l, k # N,

where \l and 'k are the eigenvalues of &2D
1 and &2D

2 respectively. Our
assumptions on &2D

1 imply

N(\, &2D
1 )�\d1�2Lcl

d1
|01 |.

Therefore

N(*, &2D)=*[(l, k) # N_N : \l+'k<*]

=*[(l, k) # N_N : \l<(*&'k)+]

�Lcl
d1

|01 | :
k

(*&'k)d1�2
+ . (2.9)

Let us first assume that d1=2. Then by applying (2.5) to &2D
2 we find

N(*, &2D)�*1+d2 �2Lcl
2 |01 |(2?)&d2 |02 | |

Rd2

(1&|!| 2)+ d!

=*1+d1 �2Lcl
2 Lcl

d2

2
(d2+2)

|01 | |02 |=*d�2Lcl
d |0|.
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Let

B( p, q)=|
1

0
&p&1(1&&)q&1 d&=

1( p) 1(q)
1( p+q)

be the Beta function. If d1>2, then using the same arguments we find

:
k

(*&'k)d1�2
+

=B(d1 �2&1, 2)&1 :
k : *>'k

|
�

0
&d1�2&2(*&'k&&)+ d&

�B(d1 �2&1, 2)&1 :
k
|

�

0
&d1�2&2(*&&&'k)+ d&

�B(d1 �2&1, 2)&1 |02 |
2

d2+2
Lcl

d2 |
�

0
&d1�2&2(*&&)d2 �2+1

+
d&

=*d |02 |
2

d2+2
Lcl

d2
B(d1�2&1, 2)&1 B(d1 �2&1, d2 �2+2). (2.10)

Collecting together all the constants in (2.9) and (2.10), we complete the
proof. K

Corollary 2.9. Under the conditions of Theorem 2.8, if 01 /R2 is a
tiling domain, then the Po� lya conjecture holds true.

4. Let us consider the eigenvalue problem for the equations of
classical elasticity

&a2uj&(a+b)
�

�xj
({ } u)=*uj , (2.11)

uj | �0=0, j=1, 2, 3, x # 0/R3, (2.12)

where a and b denote the Lame� constants, a, b>0 and u=(u1 , u2 , u3) is
the elastic displacement vector. In this case B(!) is equal to the matrix

a
a+b

|!| 2+!2
1 !1!2 !1!3

B(!)=(a+b) }\ !2!1

a
a+b

|!|2+!2
2 !2!3 + ,

!3!1 !3!2

a
a+b

|!| 2+!2
3

! # R3.
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Its eigenvalues are

&1=a |!| 2, &2=a |!| 2, and &3=(2a+b) |!| 2.

Thus we obtain

|
R3

Tr .1(B(!)) d!=
8?
15

(2a&3�2+(2a+b)&3�2).

Applying Theorem 2.5 with :=2 we derive

Corollary 2.10. Let 0/Rd be an open set of finite measure, |0|<�.
If BD is the operator of classical elasticity (2.11), (2.12), then

N(*, BD )�*3�2(2?2)&1 53�23&5�2(2a&3�2+(2a+b)&3�2) |0|,

or equivalently

*k�
3a
5 \ 3

2+(2+b�a)&3�2+
2�3

} \2?2k
|0| +

2�3

. (2.13)

Remark 2.11. Formula (2.13) is an improvement of the inequality (1.19)
obtained in [LP]. This became possible because the right hand side in
(2.6) involves the trace Tr .1(B(!)) rather than m } maxj=1, ..., m &j (B(!)),
where &j (B(!)) are the eigenvalues of the matrix B(!).

3. NEUMANN BOUNDARY VALUE PROBLEM

1. Let us consider a differential operator

A(D) u(x)= :
;�l

A;D;u(x), u # C�(0� , Cm), m # N,

where 0/Rd is an open set and the coefficients A; are m_m-matrices
independent of x # 0. Let us introduce a quadratic form

B0� [u, u]=|
0

&A(D) u&2 dx, u # C�(0� , Cm),

where 0� is the closure of the set 0. This form is semibounded from below.
Let us study the completion of C�(0� , Cm) with respect to the quadratic
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form B0� [u, u]+�0� &u&2 dx and let BN be the corresponding Friedrichs
extension of the differential operator B(D)=A*(D) A(D). The operator
BN can be naturally considered as an operator of the Neumann boundary
problem in the domain 0 for the differential operator whose symbol is
equal to B(!) :=A*(!) A(!).

Let us assume that the spectrum of this operator is discrete and consists
of 0=+1�+2�+3� } } } , and that +k � � as k � �.

We put aside the problem of the discreteness of the spectrum of BN . For
example, in the scalar case when B(!)=|!| 2l the discreteness of the spec-
trum of this operator is equivalent to the compactness of the embedding
Hl (0) � L2(0). The latter requires some restrictive assumption on 0. The
precise conditions of the compactness of this embedding are given in [Mz].

Theorem 3.1. Let |0|<� and assume that the spectrum of the operator
BN is discrete, +k � � as k � �. Then

:
k

(+&+k)+�(2?)&d |0| |
Rd

Tr .+(B(!)) d!, +�0. (3.1)

Proof. Let |k , be the orthonormal basis of eigenfunctions of the operator
BN whose respective eigenvalues are +k , k=1, 2, .... Denote

e!(x)={exp(ix!),
0,

as x # 0,
as x � 0,

and introduce the orthonormal basis [{j (!)]m
j=1 consisting of the eigen-

vectors of the matrix B(!). Then

:
k

(+&+k)+ =Tr .+(BN )

=:
k

.+(+k) |
0

&|k(x)&2 dx

=(2?)&d :
k

.+(+k) |
Rd

&|̂k(!)&2 d!

=(2?)&d :
k

:
m

j=1

.+(+k) |
Rd

|(|̂k(!), {j (!))| 2 d!. (3.2)

Let E& , & # R, be the spectral projection of the selfadjoint operator BN . We
can now rewrite (3.2) as
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Tr .+(BN )=|
Rd

:
k

.+(+k) :
m

j=1
|

0
|

0
(|k(x), {j (!) e!(x))

_({j (!) e!( y), |k( y)) dy dx d!

= :
m

j=1
|

Rd |
�

0
.+(&)(dE&e!{j (!), e!{j (!)) d!. (3.3)

Since

|0|&1 |
�

0
(dE&e! {j , e!{j)=1, \! # Rd, j=1, 2, ..., m,

then by applying the Jensen inequality to the right hand side of (3.3) we
obtain

Tr .+(BN )�|0| |
Rd

:
m

j=1

.+ \ 1
|0| |

�

0
&(dE&e!{j (!), e!{j (!))+ d!.

Notice that

|
�

0
&(dE& e! {j , e! {j)=B0� [e!{j (!), e!{j (!)]

=|
0

&A(D) e! {j (!)&2 dx

=|0| &A(!) {j (!)&2

=|0|(B(!) {j (!), {j (!)).

Since {j (!) are the eigenvectors of the matrix-function B(!), we have

:
m

j=1

.+ \ 1
|0| |

�

0
&(dE&e!{j (!), e!{j (!))+=Tr .+(B(!)).

This leads to (3.1) and completes the proof. K

2. Apply now the inequality (3.1) to the counting function of the
spectrum of the operator BN .

Theorem 3.2. Let 0/Rd be an open set of finite measure, |0|<� and
B(!) be a positively homogeneous symbol of degree 2l. Then under the
assumptions of Theorem 3.1 we have

N(+, BN )�+d�2l (2?)&d |0| |
Rd

Tr .1(B(!)) d!, +�0. (3.4)
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Proof. Since the first eigenvalue of the operator BN is equal to zero we
obtain that

N(+, BN )�
1
+

:
k

(+&+k)+ , +�0.

Theorem 3.1 and the homogeneity of the matrix B(!) lead us to

N(+, BN )�
1
+

(2?)&d |0| |
Rd

Tr .+(B(!)) d!

=+d�2l (2?)&d |0| |
Rd

Tr .1(B(!)) d!. K

Let m=1 and B(!)=|!| 2l, l # N. Then the operator BN coincides with
the operator of the Neumann boundary problem for (&2) l. In this case

(2?)&d |
Rd

.1(B(!)) d!=Lcl
d

2l
(d+2l )

.

and (3.4) implies.

Corollary 3.3. Let 0/Rd be an open set of finite measure, |0|<�.
Then

N(+, ((&2) l)N )�+d�2lLcl
d

2l
d+2l

|0|, +�0. (3.5)

Remark 3.4. If l=1, then (3.5) is equivalent to the inequality (1.3)
proved in [K1].

4. MORE EIGENVALUE ESTIMATES FOR
THE DIRICHLET LAPLACIAN

Let BD =&2D in L2(0), 0/Rd and let us assume that the spectrum of
this operator is discrete. Let |1 , |2 , ... be the orthonormal basis of eigen-
functions of the operator BD whose respective eigenvalues are 0<*1<*2� } } } .
Denote

|~ =sup
x # 0

||1(x)|. (4.1)

Using an argument similar to those we used in Section 3 we can prove the
following statement.
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Theorem 4.1. Let the spectrum of the operator &2D in L2(0) be
discrete. Then for any *>0 we have

Tr .*(&2D)=:
k

(*&*k)+�(*&*1)1+d�2
+ Lcl

d

2
d+2

|~ &2. (4.2)

Proof. The functions

%!(x) :=|1 e&i(x, !), ! # Rd,

belong to the domain of the operator &2D. Obviously

Tr .*(&2D)=:
k

.*(*k) | ||k | 2 dx

�|~ &2 :
k

.* (*k) | ||1|k | 2 dx

=(2?)&d |~ &2 :
k

.*(*k) | } | |k%!(x) dx }
2

d!.

If the spectral projection of the operator &2D is denoted by E& , then the
last expression can be rewritten as

Tr .*(&2D)�(2?)&d |~ &2 |
Rd |

�

0
.*(&)(dE&%! , %!) d!.

Clearly

|
�

0
(dE& %! , %!)=&%!&2

L2(0)=&|1&2
L2(0)=1,

and by using the Jensen inequality we obtain

Tr .*(&2D)�(2?)&d |~ &2 | .* \|
�

0
&(dE&%! , %!)+ d!. (4.3)

A simple calculation gives

|
�

0
&(dEn %! , %!)=|

Rd
|{%! | 2 dx=(|!| 2+*1). (4.4)

543DIRICHLET�NEUMANN EIGENVALUE PROBLEMS



File: DISTIL 315514 . By:DS . Date:10:12:97 . Time:13:21 LOP8M. V8.B. Page 01:01
Codes: 2016 Signs: 963 . Length: 45 pic 0 pts, 190 mm

Combining (4.4) in (4.3) we arrive at

Tr .*(&2D)�(2?)&d |~ &2 |
Rd

.*( |!| 2+*1) d!

=(*&*1)1+d�2
+ Lcl

d

2
d+2

|~ &2.

The theorem is proved. K

In particular, if *=*2 in (4.2), then we obtain the following upper
estimate for the difference of the two first eigenvalues for the Dirichlet
Laplacian.

Corollary 4.2. Under the conditions of Theorem 4.1 we have

*2&*1�\Lcl
d

2
d+2+

&2�d

|~ 4�d.

Remark 4.3. Some other upper estimates on *2&*1 were studied in
[PPW] and [SWYY] (see also [SY]).

If *>*1 , then

N(*, &2D)�
1

*&*1

Tr .*(&2D)

and by using (4.2) we derive

Corollary 4.4. If the conditions of Theorem 4.1 are satisfied, then for
any *>*1 we obtain

N(*, &2D)�(*&*1)d�2 Lcl
d

2
d+2

|~ &2.
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