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ABSTRACT. Improved estimates on the constants , for
, , in the inequalities for the eigenvalue moments of

Schrödinger operators are established.

1. INTRODUCTION

Let us consider a Schrödinger operator in
(1.1)
where is a real-valued function. The inequalities

tr(1.2)

are known as Lieb-Thirring bounds and hold true with finite constants
if and only if for , for and for

. Here and in the following, denote the positive
and negative parts of a self-adjoint operator . The case
was shown by Lieb and Thirring in [21]. The critical case , is
known as the Cwikel-Lieb-Rozenblum inequality, see [8, 19, 22] and also
[18, 7]. The remaining case , was verified in [25].
It is known that as soon as and the constant is finite,

then we have Weyl’s asymptotic formula

lim tr lim

cl(1.3)

where the so-called classical constant cl is defined by

cl

(1.4)

This immediately implies .
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Until recently the sharp values of were known only for ,
, (see [21, 1]), where they coincide with . In [17] Laptev and

Weidl extended this result to all dimensions. They proved that ,
for , . Recently, Hundertmark, Lieb and Thomas showed in
[15] that the sharp value of is equal to .
The purpose of this paper is to give some new bounds on the constants
for and all (see 4). In particular, one of our

main results given in Theorem 4.1, says that

(1.5)

whereas for large dimensions it was only known that with
some constant .
For the important case , we have

compared with obtained in [20] and its
improvement obtained in [5].
Note also that our estimates on the constant imply that

as was conjectured in [23].
In order to get our results we give a version of the proof obtained in [15]

for matrix-valued potentials (see 3). Note that E.H.Lieb has informed us
that the original proof obtained in [15] also works for matrix-valued poten-
tials. After that in 4 we apply the equality , for and

shown in [17] by using the “lifting” argument with respect to the
dimension suggested in [16]. The same arguments as in [17] yield the
corresponding inequalities for Schrödinger operators with magnetic fields.
Finally, we are very grateful to L.E.Thomas who was also involved in the

new proof of Theorem 3.1 as well as making many valuable remarks.

2. NOTATION AND AUXILIARY MATERIAL

Let be a separable Hilbert space with the norm and the scalar
product and let and be the zero and the identity operator on .
Denote by the Banach space of all bounded operators on and by

the (separable) ideal of all compact operators. Let and
be the classes of trace and Hilbert-Schmidt operators on respectively. For
a nonnegative operator

is the ordered sequence of its eigenvalues (including multiplicities). We use
the symbol “tr” to denote traces of operators (matrices) in different Hilbert
spaces.
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The Hilbert space is the space of all measurable func-
tions such that

The Sobolev space consists of all functions whose norm

is finite. Obviously the quadratic form

is closed in on the domain . Let

be an operator-valued function satisfying

(2.1)

for some finite with

if
if
if

Then the quadratic form

is bounded with respect to and thus the form

(2.2)

is closed and semi-bounded from below on . It generates the
self-adjoint operator

(2.3)

in . It is not difficult to see, that if the operator belongs to
for a.e. and satisfies the condition (2.1), then the negative

spectrum

of the operator is discrete.
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3. AN UPPER BOUND FOR THE EIGENVALUE MOMENT IN THE
CRITICAL CASE AND .

3.1. A sharp Lieb-Thirring inequality for and . In this
section we give a version of the proof from [15] which will be applied to
the Schrödinger operators with operator-valued potentials. The main result
of this section is the following statement:

Theorem 3.1. Let be a nonpositive operator-valued function, such
that for a.e. and tr . Then

tr tr(3.1)

Remark. The constant cl is the best possible. Indeed,
is achieved by the operator of rank one , where
and is Dirac’s -function (see [15]).

We follow the strategy of [15] quite closely but give a different proof of
the monotonicity lemma.

3.2. Monotonicity Lemma. In order to prove the monotonicity lemma we
need an auxiliary “majorization” result. Let and let us denote

Then by Ky-Fan’s inequality (see for example [12, Lemma 4.2]) the func-
tionals , , are norms on and thus for any unitary
operator in we have

Definition 3.2. Let , be two compact operators on . We say that
majorizes or , iff

for all

Lemma 3.3 (Majorization). Let be a nonnegative compact operator ,
be a family of unitary operators on , and let be a probability

measure on . Then the operator

is majorized by .
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Proof. This is a simple consequence of the triangle inequality

Remark. The notion of majorization is well-known in matrix theory (see
[3]). For finite dimensional Hilbert spaces even the converse statement
of Lemma 3.3 is true, cf. [2, Theorem 7.1]:
If and are nonnegative matrices and tr tr , then the condition

implies that there exist unitarymatrices and , ,
such that

Let be an operator-valued function and let
. Denote

(3.2)

Obviously, is a nonnegative, trace class operator on , its trace
is independent of , and equals tr .

Lemma 3.4 (Monotonicity). The operator is majorized by

for all .

Proof. Using the majorization Lemma 3.3 the proof is basically reduced to
a right choice of notation. Let be the nonnegative compact operator in

, given by the integral kernel1 . Further-
more let

if
if

(3.3)

be the Cauchy distribution and be the group of unitary multi-
plication operators e on . Passing to the
Fourier representation of the Green function in (3.2) we obtain

(3.4)

1In the scalar case would just be the rank one operator (in Dirac notation).
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Of course, . In particular, Lemma 3.3 and (3.4) immediately imply
. The Cauchy distribution is a convolution semigroup, i.e.
. If we insert this into (3.4) and change variables using the group

property of the unitary operators , then Lemma 3.3 yields

This completes the proof.

3.3. Proof of Theorem 3.1. Let , so . Then
from the assumptions made in Theorem 3.1, we find that is a family
of nonnegative Hilbert-Schmidt operators such that . Let

(3.5)

where is defined in (3.2). According to the Birman-Schwinger principle
[4, 24] we have

for all negative eigenvalues of the Schrödinger operator (2.3). Mul-
tiplying this equality by and summing over we obtain

(3.6)

In contrast to the operator is well-behaved for small energies. We
now use the same monotonicity argument as in [15] to dispose of the energy
dependence of the operator in (3.6). Namely, for any , Lemma 3.4
implies that the partial traces are monotone decreasing in .
Given this monotonicity, a simple induction argument yields

for all

Hence, by (3.6) we also have the bound

tr tr tr

The proof is complete.

3.4. A priori estimate for moments 1 2. Following Aizenman and
Lieb [1] we can “lift” the bound of Theorem 3.1 to moments .
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Corollary 3.5. Assume that is a nonpositive operator-valued function
for a.e. and that tr for some . Then

tr cl tr(3.7)

Proof. Note that Theorem 3.1 is equivalent to

tr tr

Scaling gives the simple identity for all

where is the Beta function. Let the eigenvalues of . Then

tr tr

tr

tr cl tr

4. NEW ESTIMATES ON THE CONSTANTS FOR ,

4.1. The Main result. We consider now the Schrödinger operator (2.3) in
for an arbitrary . Assume that is a nonpositive operator-

valued function satisfying the condition

tr(4.1)
for some appropriate . We shall discuss bounds on the optimal constants
in the Lieb-Thirring inequalities

tr tr(4.2)

In [17] it has been shown that
cl for all(4.3)

The main result of the paper concerns .
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Theorem 4.1. Let be a nonpositive operator-valued function and let the
condition (4.1) be satisfied. Then the following estimates on the sharp con-
stants hold

cl for all(4.4)
cl for all(4.5)
cl for all(4.6)

Remark. For the special case we find that
cl cl for all

Even in the scalar case this is a substantial improvement of the pre-
viously known numerical estimates on these constants in high dimensions
obtained in [5] and [20].
Remark. In fact, our proof of Theorem 4.1 yields

cl
cl

According to Corollary 3.5 we know that cl . In the scalar case
Lieb and Thirring conjectured that

cl

In particular, if this were true in the matrix case for , our approach
would imply cl cl .

Proof of Theorem 4.1. We apply an induction argument similar to the one
used in [17]. For and the bound (4.5) is identical
to (3.7).
Consider the operator (2.3) in the (external) dimension . We rewrite the

quadratic form for as



LIEB-THIRRING CONSTANTS 9

The form is closed on for a.e. and it induces
the self-adjoint operator

on . For a fixed this is a Schrödinger operator in
dimensions. Its negative spectrum is discrete, hence is compact on

.
Assume that we have (4.4)–(4.5) for the dimension and all from

the interval . Then tr satisfies the bound

tr tr

(4.7)

for a.e. . Here
cl for(4.8)
cl for(4.9)

Indeed, (4.8) follows from (4.3) and (4.9) follows from (4.4)–(4.5) in di-
mension .
Let be the quadratic form corresponding to the operator

on . We have
and

(4.10)

for all . According to section 2.2 the form on the r.h.s.
of (4.10) can be closed to and induces the self-adjoint operator

on . Then (4.10) implies

tr tr(4.11)

The assumption implies that tr is an integrable func-
tion and we can apply Corollary 3.5 to the r.h.s. of (4.11). In view of (4.7)
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we find

tr tr

tr

for . The bounds (4.5), (4.8) or (4.9) and the calculation

cl cl

cl

complete the proof.

4.2. Estimates formagnetic Schrödinger operators. Following a remark
by B. Helffer [13] and using the arguments from [17] we can extend The-
orem 4.1 to Schrödinger operators with magnetic fields. Let be a
self-adjoint operator in

(4.12)

where

is a magnetic vector potential with real-valued entries .
We consider the inequality

tr ˜(4.13)

where the nonpositive operator function satisfies (4.1). In [17] it has
been shown, that

˜ cl for all(4.14)

In general, the sharp constant ˜ in (4.14) might differ from the sharp
constant in (4.2)

cl ˜

By combining the arguments from [17] and those used in the prove of The-
orem 4.1 we immediately obtain the following result:
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Theorem 4.2. The following estimates on the sharp constants ˜ in (4.13)
hold

˜ cl for all(4.15)
˜ cl for all(4.16)
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