SPECTRAL PROPERTIES OF THE LOGARITHMIC LAPLACIAN

ARI LAPTEV AND TOBIAS WETH

ABSTRACT. We obtain spectral inequalities and asymptotic formulae for the
discrete spectrum of the operator % log(—A) in an open set Q € RY, d >
2, of finite measure with Dirichlet boundary conditions. We also derive some
results regarding lower bounds for the eigenvalue A1 (€2) and compare them with
previously known inequalities.

1. INTRODUCTION

In the present paper, we study spectral estimates for the logarithmic Laplacian
La = log(—A), which is a (weakly) singular integral operator with Fourier sym-

bol 2log |n| and arises as formal derivative d;|  (—A)® of fractional Laplacians

at s = 0. The study of L has been initiated reésgntly in [CW], where its relevance
for the study of asymptotic spectral properties of the family of fractional Laplacians
in the limit s — 0T has been discussed. In particular, it has been proved in [CW,
Theorem 1.5] that the principal Dirichlet eigenvalue of L A in a bounded Lipschitz
domain is given as a right derivative of principal Dirichlet eigenvalues of fractional
Laplacians (—A)® at s = 0, whereas the corresponding principal eigenfunction
arises as L2-limit of corresponding Dirichlet eigenfunctions of (—A)*. Extensions
of these results to higher eigenvalues and eigenfunctions were obtained afterwards
in [FIW] together with uniform convergence and continuity results for these eigen-
functions. Further motivation for the study of LA is given in [JSW], where it has
been shown that this operator allows to characterize the s-dependence of solution
to fractional Poisson problems for the full range of exponents s € (0, 1). The loga-
rithmic Laplacian also arises in the geometric context of the O-fractional perimeter,
which has been studied recently in [DNP].

For matters of convenience, we state our results for the operator H = %LA which
corresponds to the quadratic form

0 (0. 9hog = g [ oalleD €)1 ds. (L.
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Here and in the following, we let ¢ denote the Fourier transform
€= 50 = [ el da

of a function ¢ € L2(R?). Let © C R? be an open set of finite measure, and let
H(£2) denote the closure of C2°(2) with respect to the norm

o llpll = [ Tog(e +1€) [F(E) . (12

Then (-, -);0q defines a closed, symmetric and semibounded quadratic form with
domain H(Q2) C L?(Q), see Section 2 below. Here and in the following, we
identify L?(£2) with the space of functions u € L?(R%) with v = 0 on R? \ . Let

H:D(H) C L*(Q) = L*(Q)

be the unique self-adjoint operator associated with the quadratic form. The eigen-
value problem for H then writes as

HSO = )\go, in Q,
=0, on R\ Q.

We understand (1.3) in weak sense, i.e.

e H(Q) and (¢,¥)i0g = )\/ng(:z:)¢(:c) dx forall ¢ € H(Q).

As noted in [CW, Theorem 1.4], there exists a sequence of eigenvalues
/\1(9) < )\2(9) <..., lim )\k(Q) = 00
k—o00

(1.3)

and a corresponding complete orthonormal system of eigenfunctions. We note that
the discreteness of the spectrum is a consequence of the fact that the embedding
H(Q2) < L2(Q) is compact. In the case of bounded open sets, the compactness
of this embedding follows easily by Pego’s criterion [P]. In the case of unbounded
open sets of finite measure, the compactness can be deduced from [JW, Theorem
1.2] and estimates for || - ||, see Corollary 2.3 below.

In Section 2, using the results from [CW] and [FKV], we discuss properties of
functions from D(H). In particular, we show that e”f}m co € DH), € € R4,
provided (2 is an open bounded sets with Lipschitz boundary.

In Section 3 we obtain a sharp upper bound for the Riesz means and for the num-
ber of eigenvalues V() of the operator 7 below \. Here we use technique de-
veloped in papers [Bz1], [Bz2], [LY] and [L]. In [Lap] it was noticed that such
technique could be applied for a class of pseudo-differential operators with Dirich-
let boundary conditions in domains of finite measure without any requirements on
the smoothness of the boundary.

We discuss lower bounds for A\;(£2) in Section 4. In Theorem 4.1 we present an
estimate that is valid for arbitrary open sets of finite measure. For sets with Lips-
chitz boundaries, H.Chen and T.Weth [CW] have proved a Faber-Krahn inequality
for the operator H that reduces the problem to the estimate of A\;(B), where B is
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a ball satisfying |B| = ||, see Corollary 4.3. In Theorem 4.4 we find an estimate
for A1 (By), where By is the unit ball, that is better in lower dimensions than the
one obtained in Theorem 4.1. We also compare our results with bounds resulting
from previously known spectral inequalities obtained in [BK] and [B].

In Section 5 we obtain asymptotic lower bounds using the coherent states trans-
formation approach given in [G]. It allows us to derive, in Section 6, asymptotics
for the Riesz means of eigenvalues in Theorem 6.1 and for N () in Corollary 6.2.
Here Q C RY is an arbitrary open set of finite measure without any additional
restrictions on the boundary.

Finally in Section 7 we obtain uniform bounds on the Riesz means of the eigen-
values using the fact that for bounded open sets with Lipschitz boundaries we have
et| o € D(H).

We close this introduction with some remarks comparing the logarithmic Laplacian
H = %L A with the spectral-theoretic logarithm log(—Ap) of the Dirichlet Lapla-
cian —Ap on a bounded Lipschitz domain 2 with form domain H} (). Clearly,
the eigenvalues of log(—A p) are merely given as log AP (), where \P(Q), k € N
denote the Dirichlet eigenvalues of —A on 2. Comparing these eigenvalues with
the eigenvalues A\, (€2) of H, we note that

1
A(€) < 5 log AP(@Q)  forkeN.

Indeed, this follows by combining [MN, Theorem 5] with [FJW, Theorem 1.1(i)].
On the other hand, as we shall see in Corollary 6.2 below, the Weyl asymptotics of
Ak(€2) as k — oo are, up to first order, the same as those for & log AP (€2), the latter
being a consequence of Weyl’s classical result for the Dirichlet Laplacian. We also
stress the obvious fact that the eigenfunctions of log(—Ap) are the same as those
of the Dirichlet Laplacian, while those of H = %LA differ significantly due to a
much weaker boundary regularity.

2. PRELIMINARIES AND BASIC PROPERTIES OF EIGENVALUES

As before, let (-, -)log denote the quadratic form defined in (1.1), and let, for an
open set Q C RZ, H(Q) denote the closure of C2°(£2) with respect to the norm
|| - ||« defined in (1.2).

Lemma 2.1. Let Q C RY be an open set of finite measure. Then (-, ) log defines a

closed, symmetric and semibounded quadratic form with domain H(2) C L?(1Q).

Proof. Obviously, the form (-, -);,4 is symmetric. For functions ¢ € C2°(Q), we
have

@m)leld = 1213 < llel?. 2.1)
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log(e+t)

Togt ~ We have

Moreover, with ¢; := log(e + 2) + sup
t>2

2
2 ~
90 < g+ [
1 €=

< (27T)d(HSDH% + (0, Piog) — /|§<

< @0 (el + (2, Dhog) + 1] - gy 1B1% 22

21n!€\\<5(§)!2d§

21n|§r\¢<5>12d§

while
1212 < llelif < 19 llel3. (2.3)
Consequently,
lell? AT 1l 09 Y |y o
> — |1 24
(@a (p)log = (27T)d61 + (27T)d ||90”2 (2.4)
(1 _q_ 201121 5,09y ol
“\a (2m)d #llz-
In particular, (¢, ¢);0q is semibounded. Moreover, it follows from (2.4) and the
completeness of (H(£2), || - ||«) that the form (¢, )04 is closed on H(S2). O
Lemma 2.2. Let Q C R be an open set of finite measure. Then
2
x —
o= el = // ) = ew))” 4, 2.5)
lz—y|<1 ‘l’ - y’
defines an equivalent norm to the norm || - ||« defined in (1.2) on CZ°(€2).

Proof. Let ¢ € C2°(€2). By [FKV, Lemma 2.7], we have
lellz < call@||x with a constant ¢ > 0 independent of (. (2.6)

In particular, || - ||+« defines a norm on C2°(€2). Next we note that, by [CW, Theo-
rem 1.1(i1) and Eq. (3.1)],

(. Phos = 5 [ [Eavtallela)do = il = [ 1+ el do+ Gallel

with .
7 20(d/2)

wo= " et ) ) @)

and
JRIN{0} = R, j(2) = 2Kalga g, (2)|2]

Here ¢ := 1% is the Digamma function and v = —I"(1) is the Euler-Mascheroni
constant. Consequently, we have

< lillsollllf + Calloll

< (Il llsol92 + Ga ) lll3: 258)

(0, 9)10g — Kallell2




SPECTRAL PROPERTIES OF THE LOGARITHMIC LAPLACIAN 5
As a consequence of (2.1) and (2.8), we find that

1 .
12 < = [0 Dog + (ol + o) 013]

1
< —|1 1 O 2_
< Gyt (1 1l + ) ol
Moreover, by (2.2), (2.3), (2.6) and (2.8) we have

lel?
L < @m0l + (01 Do) + ] o 2l

< @m) (RallolZ, + (1 + 1ol + Ca)1013) + 0] -l 1y 0 121
< esllell?
with c3 = (QW)d’{d +c2 [(271')6[(1 + ||]‘|OO|Q| "’Cd) + Hln | : ’HLl(Bg(O))|Q|]' Hence
the norms || - ||, and || - ||+« are equivalent on C2°(€2). O

Corollary 2.3. Let Q C R? be an open set of finite measure. Then the embedding
H(Q) — L2(Q) is compact.

Proof. Let H(f2) be defined as the space of functions ¢ € L?(R%) with ¢ = 0 on

RY\ Q and
// <¢m>—¢@»2mﬂy<a)
lz—y|<1 B 3/~|d .

By [JW, Theorem 1.2], the Hilbert space (H(£2), || - ||««) is compactly embedded in
L?(€2). Since, by Lemma 2.2, the norms || -{| . and || -[|..« are equivalent on C2°(2),
the space HI(2) is embedded in H(2). Hence the claim follows. O

Corollary 2.4. Let Q C R? be a bounded open set with Lipschitz boundary.

(i) The space H(Q) is equivalently given as the set of functions ¢ € L*(R?)
with o = 0 on R\ Q and

_ 2
// E@Lﬁglmw<m. 2.9)
|lz—y|<1 |ZL‘ - y|
(ii) H(Q?) contains the characteri;tic function 1q of S and also the restrictions
of exponentials x — 1g(z) ™€, ¢ € R

Proof. (i) Let, as in the proof of Corollary 2.3, H(Q) be the space of functions
¢ € L*(R?) with p = 0 on R? \ Q and with (2.9), endowed with the norm || - |-
Since © C R< be a bounded open set with Lipschitz boundary, it follows from
[CW, Theorem 3.1] that C5°(Q) C H(Q) is dense. Hence the claim follows from
Lemma 2.2.

(i) follows from (i) and a straightforward computation. U

Next we note an observation regarding the scaling properties of the eigenvalues
Ak (€2).
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Lemma 2.5. Let Q C RY be a bounded open set with Lipschitz boundary, and let
RQ:={Rx : v € Q}.

Then we have

Ae(RQY) = A\p(Q) —log R forallk € N.
Proof. Since C3°(€2) C H((2) is dense, it suffices to note that
(PR, PR)10g = (0, P)10g — log RH<)0”2L2(Rd) for ¢ € C°(RY) (2.10)

with o € CP(R?) defined by pr(z) = nggp(%), whereas [|og|[r2gay =
[l L2 (ray- Since

_ 4.
or=R2p(R-)

we have
((pRv(PR)log
1 /\ Rd R
~ 2n) /Rdlog(lél)m(f)lzdfz @ny /Rdlog(f\)|<p(R§)]2d§

1 ~
= /Rd (log([¢]) —log R) [B(€)|? d€ = (¢, P)iog — l0g Rl |72 (gay

as stated in (2.10).

3. AN UPPER TRACE BOUND

Throughout this section, we let @ C R? denote an open set of finite measure.
Let {¢x } and {\x} be the orthonormal in L?(2) system of eigenfunctions and the
eigenvalues of the operator H respectively. In what follows we denote

A—t, if t<A
)\ —t _ 9 9
A=)+ {0, it 1>\
Then we have
Theorem 3.1. For the eigenvalues of the problem (1.3) and any \ € R we have
1

A= Xp)g < Qle™ By d7 T, 3.1
Ek:( k)-‘-— (27T)d‘ |€ ’ d| ( )

where | By is the measure of the unit ball in R
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Proof. Extending the eigenfunction . by zero outside 2 and using the Fourier
transform we find

DA =) = Z (Aprs ox) = (Heow, 1)) 1
k
(Z / —log(€])) (¢ Wa)

1
< G [, o), DI de

Using that {¢} is an orthonormal basis in L?(Q2) and denoting ez = e~*("$)we

have
STIBEEOP =Y I(ee, o) = llecl 20y = 19,
k k

and finally obtain

S = M) < g 19 / log(lE])),

k
1
— a0 [ log(le ™ de
(2m) el<1
We complete the proof by computing the last integral. O

Let n > A and let us consider the function

() = 1, if <A,
=00, i e

and let
N = #{k: Ao < AL,
be the number of the eigenvalues below A of the operator H.

Then by using the previous statement we have

1 1
N(A) < Y ;(77 — M)t < 7= (2n)¢

Minimising the right hand side w.r.t. n we find n = \ + é and thus obtain the
following

Q| e | By| d 1.

Corollary 3.2. For the number N ()\) of the eigenvalues of the operator H below
A we have .

N(A) < BAdHW 12| | By

(3.2)
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4. A LOWER BOUND FOR A;(Q2)

In this section, we focus on lower bounds for the first eigenvalue A\; = A1 ().
From Corollary 3.2, we readily deduce the following bound.

Theorem 4.1. Let Q C R be an open set of finite measure. Then we have

1 (2m)d

Q -1 4.1
M= g8 ol B “n

)

Bal’ then the operator H does not have negative eigenval-
ues.

Proof. 1f X < 1log ‘gﬁg > then N(A) < 1 by (3.2), and therefore N(\) = 0.
(2m)°

Consequently, H does not have eigenvalues below > 5 log T TBal" U

Remark 1. Note that the inequalities (3.1), (3.2) and (4.1) hold for any open set
Q of finite measure without any additional conditions on its boundary.

In the following, we wish to improve the bound given in Theorem 4.1 in low di-
mensions d for open boundary sets with Lipschitz boundary. We shall use the
following Faber-Krahn type inequality.

Theorem 4.2. ([CW, Corollary 1.6])
Let p > 0. Among all bounded open sets ) with Lipschitz boundary and |Q| = p,
the ball B = B, (0) with | B| = p minimizes \1(2).

Corollary 4.3. For every open bounded sets § with Lipschitz boundary we have
|Badl

A1(Q) > M (Bg) + l |Q] 4.2)
and equality holds if () is a ball.
Proof. The result follows by combining Theorem 4.2 with the identity
M (Bo(0)) = M (By) + log% forr > 0,
which follows from the scaling property of A; noted in Lemma 2.5. U

Corollary 4.3 gives a sharp lower bound, but it contains the unknown quantity
A1(Bg). By Theorem 4.1, we have

1 2r)? 1
M (Bg) > log (|B)|2 log(2m) — g(l + 2log | Bd|)

2 d 1
— 2 10gT(d/2) +1og2 + 2log L _ L. 4.
- log (d/2) + log +ologo —— (4.3)

The following theorem improves this lower bound in low dimensions d > 2.
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Theorem 4.4. For d > 2, we have

24+ B,|2(d + 2) %

)\1(Bd) > log(2v d—+ 2) — d(271')2d

4.4

Proof. Letu € L*(B,) be radial with ||u|| ;2 = 1. Then 4 is also radial, and

1
/ u(r)Jg_l(rs)r%dr
0 2

4 1 1/2 1 1/2
<sl™3 (/ rd_1u2(r) dr) </ rJﬁ_l(sr) dr>
0 0 2
1—4 s ]./2
_ 82 [ -2 2
= =y (3 /0 Tjgil(’i') dT)

- s 1/2
—L 2 d . _
- Ea </0 TJg_l(T) d7'> for £ € R with s = [¢].

Consequently,

541 a(s)[2 < 54 /O w2 (r)dr.

4
2
In the case where, in addition, u is a radial eigenfunction of (1.3) corresponding to
A1 in Q = By, it follows that, for every A € R,

(ZW)d[)\—)\l]Z/ (A—ln|§])|ﬂ(§)|2d§§/ (A —In [¢]) ¢ [@()[ d¢

R4 R4

ade oo N C(AN=1Ins)4 ST N dr ds
_|gd 1;/0 K 1(/\—1n3)+u(8)]2ds§/0 /0 2 (r)drd

d
S 31

A A
00 9 1 e e 1
= / TJ%_I(T)/ QA=lns)y dsdr = / TJ%_I(T)/ A= s dsdr
0 2 T 0 T

S S

et A et A—=InT
= / rJ5_ (1) / (A — s)dsdr = / TJi_ (1) / sdsdr
0 271 InT 0 2~1 0

1 e 5 e2A 1
= 2/0 TJé_l(T)()\ —In7)"dr = 5, TJé_l(e’\T) In? 7 dr.
We now use the following estimate for Bessel functions of the first kind:

‘,rl/

J,(x) < T 1) for v >3 -2, 0 <z <2/2(v+2). (4.5)

A proof of this elementary estimate is given in the Appendix. We wish to apply
(4.5) with v = ¢ — 1. This gives

3 ( N . 7d=2 _ d2|Bd‘2€d/\ 42
-1 - 2d721“2(%) (2m)d
ifd>2and et < 2v/d + 2, i.e., if

d>2 and A <log(2Vd+?2). (4.6)

A J

for 7 € [0, 1]
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da
T2

Here we used that | By| = %W' Consequently, if (4.6) holds, we find that

BB 126 [1
(27T)d[)\ — A1) < 7| ale / 41?7 dr,
0

(2m)?

where

1 9 1 ) 1 9

74 n? rdr = = " inrdr == [ 7 dr = =

0 d Jo d? Jo d3
Hence

2|Bal® 4y . 2|Bal*
2m)4 N — A1) < e, A >A—
@mA =Ml s gamae™s tes Mz A—go e

Inserting the value A = log(2v/d + 2) from (4.6), we deduce that

d
2

271 By|*(d + 2)
d(2m)%d ’

as claimed. O

/\1 = )\1 (Bd) > log(2\/ d+ 2) —

Remark 2. It seems instructive to compare the lower bounds given in (4.3) and
(4.4) with other bounds obtained from spectral estimates which are already avail-
able in the literature. We first mention Beckner’s logarithmic estimate of uncer-
tainty [B, Theorem 1], which implies that!

2
(s = [ [0 @) 4108 2| P0)do > v (a/2) + 102 ol
for functions ¢ € C2°(B,) and therefore
A (Bg) = ¥ (d/4) +log 2. 4.7

Here, as before, ¢ = 1% denotes the Digamma function. Next we state a further
lower bound for (¢, )iy Which follows from [CW, Proposition 3.2 and Lemma
4.11]. We have

(0, 90)10g > Calloll3  forg € C(By), (4.8)

where ( is given in (2.7), i.e.,

( da—1

2

1
1 — v+ ; T d odd,

Ga=Tlog2+ 3 (¥(df2) =) = .

2

log2 — v+ %, d even.

k=1

Inequality (4.8) implies that
A1(Ba) = G- (4.9)

I'We note here that a different definition of Fourier transform is used in [B] and therefore the
inequality looks slightly different
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The latter inequality can also be derived from a lower bound of Banuelos and
Kulczycki for the first Dirichlet eigenvalue A{'(By) of the fractional Laplacian
(—=A)*/? in B,. In [BK, Corollary 2.2], it is proved that

I(1+ 9)r(%52)

r(g)

A(Bg) > 2¢

for a € (0,2).

Combining this inequality with the characterization of A1 (By) given in [CW, The-
orem 1.5], we deduce that
d (1 +

. A{(Bg) -1
M(Bg) =1 StV 2¢
1( d) aig)l"' (e ~ dala=0

)L (52)

9

= (a5

e

as stated in (4.9).

We briefly comment on the quality of the lower bounds obtained here in low and
high dimensions. In low dimensions d > 2, (4.4) is better than the bounds (4.3),
(4.7) and (4.9). In dimension d = 1 where the bound (4.4) is not available, the
bound (4.3) yields the best value. The following table shows numerical values
of the bounds b1 (d), ba(d), bs(d) resp. bs(d) given by (4.3), (4.4), (4.7), (4.9),
respectively.

d 1 2 3 4 5 6 7 8 9 10

by(d) | —0,55 | 0,19 | 0,55 | 0,79 | 0,97 | 1,12 | 1,25 | 1,36 | 1,46 | 1,55
by (d) / 1,28 | 1,48 | 1,59 | 1,67 | 1,73 | 1,79 | 1,84 | 1,80 | 1,94
bs(d) | —3.53 | —1,27 | —0,39 | 0,12 | 0,47 | 0,73 | 0,94 | 1,12 | 1,27 | 1,40
bsa(d) | —0,58 | 0,12 | 0,42 | 0,62 | 0,76 | 0,87 | 0,96 | 1,03 | 1,10 | 1,16

To compare the bounds in high dimensions, we consider the asymptotics as d —
oo. Since w =logt — 1+ o(t) as t — oo, the bound (4.3) yields

AM(Bg) >logd — 1+ o(1) as d — oo, (4.10)
whereas (4.4) obviously gives
M (Bq) > logvVd+2+1og2+0(1)  asd— oo, (4.11)
Moreover, from (4.7) and the fact that
P(t) =logt+ o(1) ast — oo, (4.12)
we deduce that
M (Bg) > logd —log2 + o(1) as d — oo, 4.13)
Finally, (4.8) and (4.12) yield
A (By) > log Vd + log 2 — % +o(l) asd— oc. (4.14)

So (4.13) provides the best asymptotic bound as d — oo.

Numerical computations indicate that the bound (4.4) is better than the other
bounds for 2 < d < 21, and (4.7) is the best among these bounds for d > 22.
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5. AN ASYMPTOTIC LOWER TRACE BOUND

Throughout this section, we let @ C R? denote an open set of finite measure. In
this section we prove the following asymptotic lower bound. A similar statement
was obtained in [G] for the Dirichlet boundary problem for a fractional Laplacian.

Theorem 5.1. For the eigenvalues of the problem (1.3) and any A\ € R we have

1
.. —d\ -1

Proof. Let us fix § > 0 and consider
Qs = {z € Q: dist(z, R\ Q) > 7}

Since 4 is arbitrary it suffices to show the lower bound (5.1), where €Q is replaced by
Qs. Let g € C5°(R?) be a real-valued even function, ||g|| 2 (r¢) = 1 with support

in {z € R?: |z| < 6/2}. For ¢ € R? and = € Qs we introduce the “coherent
state”

eey(r) = e “7g(x — y).

Note that ||eg || ,2(ray = 1. Using the properties of coherent states [LL, Theorem
12.8] we obtain

1
S0 =M= g [ (et (= H)e, o dud.

k

Since t — (A — t)4 is convex then applying Jensen’s inequality to the spectral
measure of H we obtain

1
S A=)y > i /Rd/ﬂ (A= (Heeyseey) o), dyde.  (5.2)
k s

Next we consider the quadratic form

1 (o) (n—
(Heey, eey) 20 = @yl /Rd/g/gez(”" V070 g(w—y)g(z—y) log(|n|) dzdadn

1 .
) /Rd /Q /Q eZ(x—Z)Pg(x —)g(z — y)log(|€ — p|) dzdzdp

- (27
- (271r)d /R /Q /Q e/ g(a—y)g(z—y) (10g |¢] +log (1€ = pl /I¢])) dzdadp
= log¢| + R(y, €).
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Since g € C°(RY) we have for any M > 0

R(y,§) =

gt [ [ ] e ata = e gz = ) os 1g — ol ¢]) dededy

= / 191> log (1€ — pl /I€]) dp < Cu / (1+lp) M log (I€ = pl /1€]) dp
Rd R
< Cle™
Therefore from (5.2) we find
S0 == 019l [ (A—loglel ~Cleleds 53

k

Let us redefine the spectral parameter A = In x. Then introducing polar coordinates
we find

/Rd<)\ —log €] — C|§’71)+ d§ = ’Sd*l‘ /000 (ln’l; — C>+ ra=1

r

& 1
= ‘Sd‘l‘/ <1n—0> rldr (5.4)
0 roour)

The expression in the latter integral is positive if —rInr > Cp~!. The function
—r Inr is concave.

Its maximum is achieved at » = 1/e at the value 1/e. The equation —rInr =
Cu~"! has two solutions 71(x) and 72(u) such that 71 (p) — 0 and 72(p) — 1 as
w — oo Therefore

oo r2 (1)
/ <ln1 - C) r¢=1dr > / (1111 — C) r¢=1ldr
o \ T opr)y n \ T
1

1 4 r2(1) C ae1|2W 1 gr2(e)
=——7r%lnr + —= —T — — as — 00
d ri(w)  p(d+1) r(p)  d* e d? :
(5.5)
Putting together (5.3), (5.4) and (5.5) and using 4 = e* we obtain
1
. —d\ —1
liminf e Zk:(h— M)+ 2 goa 9] 1Bl 7

Since § > 0 is arbitrary we complete the proof of Theorem 5.1.
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6. WEYL ASYMPTOTICS

Throughout this section, we let @ C R denote an open set of finite measure.
Combining Theorems 3.1 and 5.1 we have

Theorem 6.1. The Riesz means of the eigenvalues of the Dirichlet boundary value
problem (1.3) satisfy the following asymptotic formula

1
lim e~ - = 1Q||Byld . 1
Jlim e %:(A k) + (%)d! ||Bgld (6.1)

As a corollary we can obtain asymptotics of the number of the eigenvalues of the
operator H.

Corollary 6.2. The number of the eigenvalues N (\) of the Dirichlet boundary
value problem (1.3) below )\ satisfies the following asymptotic formula

1
lim e ™ N(\) =
Jm N = 5

192/ |Bal- (6.2)

Proof. In order to prove (6.2) we use two simple inequalities. If & > 0, then
A+ = M)s — (A=)

- £ > 1o, (M) (6.3)

and
(A= M)s — A —h =)

h
The inequality (6.3) implies, together with Theorems 3.1 and 5.1, that

<1 (k) (6.4)

limsup e ¥ N(\) < limsupe

—d)\z A+h =)+ — (A=)
k

A—00 A—00 h
L7 any —d(A+h) e A }
< = | A+ h—A —1 f A—A
< 5 | limsupe Zk:( +h— )+ —liminf e Xk:( k)4
9| Ba| e —1
< a2l h forevery h > 0
and thus
. _ QlB4| . ™ -1 |Q||B4l
1 AN < | = : 6.5
msupe™ N < g i — (2m)d ©3)
Moreover, (6.3) implies, together with Theorems 3.1 and 5.1, that
liminf e N () > lim inf e~ Z A=) =(A=h =)t
A—00 A—00 . h
1
> - edh lim 'géfe*“lA ;(A — )y —edh li)I\Iisip e~ dA=h) ;(A —h =)+

L 1911Ba 1 e

= d(2m)d " forevery h > 0
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and therefore

. B4l . 1—e ™ |Q]|Bdl

lim inf e~ PN () > | 1 = . .
hinfe NN = Gond 28w 2m) ©8)
The claim follows by combining (6.5) and (6.6). O

Remark 3. The proof of Corollary 6.2 is a version of a Tauberian type arguments
that is particularly simple due to properties of exponential functions.

7. AN EXACT LOWER TRACE BOUND

In this section we prove the following exact lower bound in the case of bounded
open sets with Lipschitz boundary.

Theorem 7.1. Let Q C R% N > 2 be an open bounded set with Lipschitz bound-
ary, let 7 € (0,1), and let
1 —~
Cori=— 1 T log(1 1 2dp, 7.1
0= gt L ) s+ DT P, (D)
where 1q denotes the indicator function of €.

For any A > 2Cq , we have

S =) = |((22L|ﬁ‘2| [6“ — 4, Cor e — b € 2N _ (x4 1)}

k

witha, := % and b, := 4dr.

Remark 4. In the definition of Cq, », we need T < 1, otherwise the integral might
not converge. In particular, if @ = By is the unit ball in R, we have

La(p) = (2m)2[pl " Ju(lp])

where Jq(r) = O(#) as r — oo. Hence the integral defining Cq . converges if
2

T < 1. A similar conclusion arises for cubes or rectangles, where

La(p) = filp1) - - - fa(pa)
and fi(s) = O(L) as|s| = 00, j =1,...,d.
On the other hand, if @ C R% is an open bounded set with Lipschitz boundary, we
have

Car <00 forT € (0,1). (7.2)

Indeed, in this case, §) has finite perimeter; i.e., 1o € BV (RY). Therefore, as noted
e.g. in [Lom, Theorem 2.14], Q also has finite fractional perimeter

g 1 (Lo(z) — 1o(y))?
P (Q) = — d—7 I
W= [ [ ey =g [ [ SR dway

forevery T € (0,1). Moreover, P-(2) coincides, up to a constant, with the integral

/ o7 Ta(0)2 dp
Rd
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which therefore is also finite for every T € (0, 1). Since moreover 1q and therefore

also 1q are functions in L?>(R?) and for every € > 0 there exists C. > 0 with
(1+ o))" log(1 + o)) < C(1+1pI™*%)  forp e RY,

it follows that (7.2) holds.

In the proof of Theorem 7.1, we will use the following elementary estimate.

Lemma 7.2. Forr >0, s > 0and T € (0, 1), we have

1
log (1 n g) < -log(l+7)  ifs€(0,1) (7.3)
and
1 T
log (1 n g) < (y) log(1+7)  ifs>1. (1.4)
In particular,

11
log (1 + g) < max{s, 57} (I+7)"log(l+r)  forr,s>0.

Remark S. The obvious boundlog(1+%) < % will not be enough for our purposes.
We need an upper bound of the form g(s)h(r) where h grows less than linearly in
T

Proof of Lemma 7.2. Let first s € (0, 1). Since

log(1+£> — 0= Llog(1+7)

r=0 S r=0
and, for every r > 0,
d r 1 1 d1
-1 (1 ,> = < = ——log(1 ,
dr 08 +s s+r — s+ sr drsOg( +7)
inequality (7.3) follows. To see (7.4), we fix s > 1, and we note that
r (I+7r)7
1 (1 7) —0=""" 1001
8 + S r=0 sT Og( + T) r=0
Moreover, for 0 < r < s — 1, we have
d (1+7r)" 1+4+7)7 1
dr( — )—log(1+7“) = 7( ST) (1+ 7log(1+7))

(1471 1 1 d r
>2 7 > > -2 (1 ,) ,
- sT T s s4+r dr g\t T s
so the inequality holds for » < s — 1. If, on the other hand, » > s — 1, we have
obviously

1 T
log (1 + g) <log(l+7r) < (::TT) log(1 + 7).

We may now complete the
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Proof of Theorem 7.1. For ¢ € R%, we define f¢ € L*RY) by fe(z) =
—m:§ d
mlge Note that || f¢[|2(gay = 1 for any £ € R We write

DO =) =D A=) llerlizg) = @) Z A = M)+ 18Rl 72 gy
k k
_ \Q!
dZA Ak)+ |fg<ﬁk|d€

(2|§r2£d /Rd Zk:()‘ — o)+l (fe, o) d€.

Since Y [(fe, ¢n)|* = HngLQ(Rd = 1 for ¢ € RY, Jensen’s inequality gives
k

S0 M 2 COMESERIED SEVUATAD I
k
o (- > ultfe 2)+d£

_ (;gd /Rd ()\ . (Hfg,fg))+ de. (7.5)

Here, since

0 —i(n—&)x —zxfd _ —inxd :I\

VI fe(n — €) = / T = /Qe z = 1qa(n)

for n, £ € R?, we have

IQ!(%)d(%fg,fg):IQI/ loglnllfg(n)!szZIQI/ log | — &|| fe(n — €)|dn
R4 Rd

=/R logln—é\lﬁ(n)\ané/R [log [¢] +log(1 + [nl/I€])] [T (n)|? dn

2 x 1 } T BN 2
<log|§r/ To(n) 2 dn + ma {m o /( T ll)" (log(1 + ) Ta(n)|? dn
— |9(27) <log|§|+max{‘§’ g‘T}CQ,T) for ¢ € RY, (1.6)

where Coq - is defined in (7.1). Here we used Lemma 7.2. Combining (7.5) and
(7.6), we get

0
SO Mg > (2‘ﬂid /Rd</\—log|£ max{’€ ‘;’T}CQT) de. (1.7)

k
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Let us redefine the spectral parameter A = log i again. Then we find

1 1
A—lo §—max{,}C ) dg
/Rd( 8le @S ).
o
:‘Sd_l)/ <logumax{1,1}CQ,T) rd=Ldr
0 r rorT 4

& 1 1] Car
:Md ’Sd_l‘/ <—logr—max{ - ,} QT > rd=Ldr
0 I A I

o0 1 C
> Md Sd*l —lOgT' e U rdfldr_ (7.8)
1 rTopt ),
m

For the last inequality, we used the fact that —4— < L forr > 1.
pt=mr = Iz

Next we note that the function r — f,(r) = —logr — = CI?T’T

fu(r) <0 forr>1 and lim fu(r) = —oo. (7.9)

r—0t

satisfies

Moreover, this function has two zeros r1(u),r2(p) with 0 < ri(p) < <

ro(p) < 1and

==

fu(r) >0 ifand only if 71(p) <7 < ra(p).
To see this, we write

1 T
f/lz(’r) = Fg(?"'r) Wlth g(S) — —zlogs — CE—’

and note that g is strictly concave since s — ¢'(s) = —% —log s is strictly decreas-
ing. Consequently, ¢g has at most two zeros, and the same is true for f. Combining
this with (7.9) and the fact that

f(1/p) =logu —Car >0

since A > 2Cq » > Cq ; by assumption, the claim above follows. From (7.8), we
thus obtain the lower bound

11
/Rd ()\ “log €] — max{m, W}Cgﬁ)ﬂg (7.10)

T2 (1) 1 C

> ’Sd_1’ / (—logr — QT) rd=1dr.
1 rTouT n
n

Next, we claim that

(1= )

ro(p) > ra3(pn) :=e (7.11)

47C, 4rC
Here we note that ——2T = —_bT
I e

(7.11), we write

< 1since A > 2Cq » by assumption. To see

_e, ST 47C
3 . 1 7Co,
r3(p) = e n with ¢, = 37Cor (1 —4 /1= 0 T>7
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noting that
C
T;’Tci —cu+1=0
and therefore
_nCar cuCo, 1 Caq,
O i e
e u
C 7TCV‘CQ,T C C
=07 (e 1 )h> T (¢, (1— 2R ) =,
euCor \TH euCar \H T
//LTe_T wr ’uTe_TiT /"L

This proves (7.11). As a consequence of the inequality /1 —a > 1 — § — % for
0 < a <1, we also have

2
CQ,T 4TCQ,T )

ra() > ¢ TEE) )

Consequently,

/]Rd (/\ —log [¢] — max{’él‘, ‘;’T}C’QJ)+df

ra(p) 1
> ,Ud sé-1 / <— logr — TCQ:T> =14,
m Tt
d
d|qd=1| [_T L 4 Car gm0
=put|S [—flogr—l——r - — }
d d? pu(d—T) 1
d |qd—1 ra(p) 1 d Ca,r der
= S ([— 1 — . LA
: g los7alw) + Hraln) i (d— T)M(M)
—d
1 L 4 Co,r T_dD
— |—1 — o eT
|: d Og/l’_‘_ dQ” ILLT(d—T)Iu y
which implies that
1 1
A —log [£| — max{ —, — CQJ) de¢
o (v ostel -y )
_ 1 Co B i 1
> d‘Sd 1‘(— d_ T d—r _ L d)
- 2 = a Bt et
2 2
— Md ‘Sd—l‘ <16_d(cl§27’7-+47—;277) _ & —(d—T)(Cl?T’T-‘rLLT;S}_vT)
d? pr(d— )
—d
_H 1y
g — —u )
Since .
_ CQ,T 4TCQ’T 47_02
e d( T 7) >1 _d(CQ,T 29,7—)
W T
and
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we conclude that

/Rd </\ —log €] — max{é" ‘;’T}CQ,T)JFdf

‘ d 1‘ CQ,T 470{22,7’ CQ,T —d
7(1—d( R i (dlogu+1)>

1
B 1 —r —27
B w (F‘d = Ca(d— o—)n"7 —4drCg u ™" — (dlog i + U)

B dd—r7) -1
= hj' (a” _dd=r)—1 y _T)T Co e — 4drC el 727 — (dx + 1)).

Combining the last estimate with (7.7), we get the asserted lower bound. U

Z p

8. APPENDIX: NOTE ON A BOUND FOR BESSEL FUNCTIONS

The following elementary bound might be known but seems hard to find in this
form.

Lemma 8.1. Forv > /3 —2and 0 < x < 2,/2(v + 2) we have

|Ju(z)] < m

Proof. We use the representation

o
A (=)™ x\2m
J”(x)_(2> Zmlr(m+u+1)<2> '
m=0
For 0 < x < 2./2(v +2) and m > 1, we have

(m+1)I'(m+v+2)
F'm+v+1)

(g)zé(m—l—l)(m—ky—kl):

and therefore

I'v+1) x\ 2(m+1) I'v+1) X\ 2m
(m+1)IM(m+v+2) (5) = m!I'(m +v +1) <§)

Consequently,

8.1)

v & v

-1)"I(v+1 2m
ol o ONE
2"T(v + 1 — m!l(m+v+1)\2 2T(v +1)

Jy(x) =

From (8.1) we also deduce that
x’ F'v+1)/z\2 T(w+1) fz\4 T(wv+1) rx\6
To(@) 2 20 (v +1) [1 T T(v+2) (5) * 20 (v + 3) (5) C6D(v+4) (5) ]

- sl - ()]
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3

. . 2 )
w1thf:R—>Rg1venbyf(t):t—Q(Vt+2)+6(V+2t)(y+3).81nce
t t2 1 t
"t)y=1- d "(t) = —1
70 s BTy LI AL o2y
we have
+3 v+3 1v+3 .
‘() > f —1-7 —1-= >0 forteRifv> -1
f'(@t) > f(v+3) V12 201 2) 2u—|—2_0 ort € Rifv >
and therefore
2(v + 2)]? 2(v +2)]? 4(v +2)?
t) < f(2 2))=2 2) — =
1) = f2+2) =2 +2) 20+2) T 6(w+2)w+3)  3w+3)
fort < 2(v+2)if v > —1. Since 4;6}123))2§%f0ru2\/§—2, we conclude
that
€T 1 T\ 9 i
I Fp . 7 PO .
J<x)_2"f‘(1/—|—1)[ 1/—|—1f((2)) - 2T(v+1)
foryz\/§—2and0§x§2\/2(1/+2). The claim thus follows. O

The data availability statement is not included in the paper.
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