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ABSTRACT. We show how a matrix version of the Buslaev-Faddeev-
Zakharov trace formulae for a one-dimensional Schrödinger operator
leads to Lieb-Thirring inequalities with sharp constants cl with

and arbitrary .

0. INTRODUCTION

Let us consider a Schrödinger operator in

(0.1)

where is a real-valued function. In [23] Lieb and Thirring proved that if
max , then there exist universal constants satisfying1

tr(0.2)

In the critical case and the bound (0.2) is known as the Cwikel-
Lieb-Rozenblum (CLR) inequality, see [8, 20, 25] and also [7, 19]. For the
remaining case , the estimate (0.2) has been verified in [27],
see also [14]. On the other hand it is known that (0.2) fails for if

and for if .
If , then the inequalities (0.2) are accompanied by the

Weyl type asymptotic formula

lim tr lim

cl(0.3)
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1Here and below we use the notion for the negative part of variables,
functions, Hermitian matrices or self-adjoint operators.
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where the so-called classical constant cl is defined by

cl(0.4)

It is interesting to compare the value of the sharp constant in (0.2) and
the value of cl . In particular, the asymptotic formula (0.3) implies that

cl(0.5)

for all and whenever (0.2) holds. Moreover, in [1] it has been shown,
that for a fixed the ratio cl is a monotone non-increasing function
of . In conjunction with the Buslaev-Faddeev-Zakharov trace formulae
[6, 9] one obtains [23]

cl(0.6)

for

and(0.7)

On the other hand one knows that

cl

if and (see [23]) or and (see [12]).
Up to now (0.7) was the only case where (0.6) was known to be true for

general classes of potentials . Notice, however, that (0.6) has
been proven for various subclasses of potentials. If, for example,
is a domain of finite measure,

as
as

(0.8)

then the equality (0.6) with can be identified with the Pólya con-
jecture on the number of the eigenvalues less than for the Dirichlet
Laplacian in . It holds true for tiling domains [24] and has been justified
in [16] for certain domains of product structure by using the method of “lift-
ing” with respect to the dimension which is also one of the main ideas of
this paper. If , then for defined by (0.8)

tr cl meas(0.9)
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This inequality was first obtained in [2], Section 5.2 as a simple corollary
of the Berezin-Lieb inequality (see [3], [21] and also [18]) 2. The Berezin-
Lieb inequality was also used in [17] in order to improve the Lieb constant
[20] in the CLR inequality for the subclass of Schrödinger operators whose
potentials are equal to the characteristic functions of sets of finite measure.
Another example is given in [5], where the identity (0.6) with and

has been verified for a class of quadratic potentials.
We note, that with the exception of (0.7), the sharp value of has been

recently found in [14], where it was proved that for and
cl

In particular, in higher dimensions the sharp values of the constants
have been unknown.

The main purpose of this paper is to verify (0.6) for any ,
and any .
In fact, this result is obtained for infinite-dimensional systems of

Schrödinger equations. Let be a separable Hilbert space, let be the
identity operator on and consider

(0.10)

in . Here is a family of self-adjoint non-positive operators
in , such that tr . Then we prove that

tr cl tr(0.11)

for all and . The inequality (0.11) can be extended to
magnetic Schrödinger operators and we apply it to the Pauli operator.
We shall first deduce (0.11) for , and from

the appropriate trace formula (1.61) for a finite system of one-dimensional
Schrödinger operators. In the scalar case these trace identities are known as
Buslaev-Faddeev-Zakharov formulae [6, 9]. The matrix case can be handled
in a similar way as in the scalar case (see [9]) However, we give rather
complete proofs of the corresponding statements in section 1, since we were
unable to find the necessary formula (1.61) in the numerous papers devoted
to this subject.
Note that we discuss trace formulae only as a technical tool in order to

establish bounds on the negative spectrum. We therefore develop the theory
of trace identities only as far as it is necessary for our own purpose.

2Later P.Li and S.-T.Yau [19] proved that cl meas ,
. By using the Legendre transform it is easy to show that the latter is equivalet to

(0.9).
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In section 2 we extend the results of section 1 to the Schrödinger operator
in . Applying a “lifting” argument with respect to dimension as
used in [10] and [16], we obtain in section 3 the main results of this paper.
Finally we would like to notice that the combination of the results of this

paper and the equality discovered in [14] has lead to new
bounds on the Lieb-Thirring constants in [13] which improve the corre-
sponding bound obtained in [4] and [22].

1. TRACE FORMULAE FOR ELLIPTIC SYSTEMS

1.1. Jost Functions. Let and be the zero and the identity operator on
. We consider the system of ordinary differential equations

(1.1)

where is a compactly supported, smooth (not necessary sign definite)
Hermitian matrix-valued function. Define

min min supp and max max supp

Then for any there exist unique matrix-solutions
and of the equations

(1.2)
(1.3)

satisfying

as max(1.4)
as min(1.5)

If , then the pairs of matrices , and ,
form full systems of independent solutions of (1.1). Hence the

matrix can be expressed as a linear combination of and

(1.6)

and vice versa:

(1.7)
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1.2. Basic properties of the matrices and for real
. Throughout this subsection we assume that . Consider the
Wronskian type matrix function

Then by (1.2) and (1.3) for we find that

Note that for min by (1.6) we have

while for max by (1.7) we find

This allows us to conclude that
(1.8)
Similarly, for the matrix-valued function

we have and
as min

as max

Thus,
(1.9)
Inserting (1.6) into (1.7) and making use of (1.8), (1.9) we obtain
(1.10)

and thus
(1.11)
(1.12)
In particular, this implies

det det det det(1.13)
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for all .

1.3. Associated Volterra equations and auxiliary estimates. Next we
derive estimates for the fundamental solutions of (1.1) for Im . Note
first that the matrices and are solutions of the integral equa-
tions

sin(1.14)

sin(1.15)

Put

Obviously, this matrix-valued function satisfies
for max(1.16)

and

(1.17)

where

(1.18)

Note that
(1.19)
for all with Im and all with min . Here and below
denotes the norm of a matrix on .
Solving the Volterra equation (1.17) we obtain the convergent series

From (1.19) we see that for all min max. Insert-
ing this estimate back into (1.17), we conclude that the inequality
(1.20)
holds for all with min max and all with Im .
Remark 1.1. If we assume that Im and , then (1.19) and
therefore (1.20) holds true for all .

It is not difficult to observe, that defined by (1.17) is smooth in
Im
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In particular, if we differentiate (1.17) with respect to we find that

Since satisfies a homogeneous Volterra integral equation with
the kernel (1.18), we obtain , and thus all the entries of
the matrix are analytic in for Im .

1.4. Further Estimates on and . If we rewrite (1.14) as follows

(1.21)

then the expressions in the brackets in the r.h.s. do not depend on for
min. Comparing (1.21) with (1.6) we see that

(1.22)

(1.23)

For sufficiently large the smoothness of and (1.20) imply

Im(1.24)

(1.25)
In subsection 1.6 we shall see that (1.25) can be improved so that

for all as(1.26)

1.5. Thematrix for Im . First note that all entries of thematrix
are analytic in for Im and continuous for Im , .

This follows from (1.22) and the analyticity of . Fixing a sufficiently
small and by using (1.22) and (1.20) we obtain

as Im(1.27)

Moreover, all the entries of and thus the function det are analytic
for Im and continuous for Im , . Near the point we
find

det as Im(1.28)

Next let us describe the connection between the function det and
the spectral properties of the self-adjoint problem (1.1) on . Our
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assumptions on the matrix potential imply, that the operator on the l.h.s.
of (1.1) has a discrete negative spectrum, which consists of finitely many
negative eigenvalues , of finite multiplicities . Ob-
viously a solution of (1.1) with belongs to , if and
only if

as min

as max

for some non-trivial vectors . Linear independent so-
lutions define linear independent vectors and

, respectively. In view of (1.6) we conclude that

dim ker(1.29)

If we select an orthonormal basis in , such that the first elements
belong to ker , we find that the first rows of vanish as
. Since det does not depend on the choice of the orthonormal basis

and all entries of are analytic, the function det has a zero of the
order

(1.30)

at , . Moreover, if , Im is not an eigenvalue of
the problem (1.1), then det .
In the remaining part of this subsection we prove that

(1.31)

Let be the Green function of the problem (1.1). If , Im
, and det it can be written as

as
as

Here and are -matrices, which are chosen such that

lim lim

lim lim

These equations turn into
(1.32)
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Since det , the determinant of is a constant with respect to .
If with min, Im , then in view of (1.6) and (1.5) we have

(1.33)

Hence

det det

and is invertible if and only if det . From (1.33) we see then,
that for min the entries of

(1.34)

satisfy

This gives , and thus

In view of (1.32) and (1.34) we obtain and finally
conclude that

as min max

(1.35)

If is in a sufficiently small neighbourhood of , the Green function
can be written as

Here is locally bounded and forms an orthonormal
eigenbasis corresponding to the eigenvalue . Hence,

det det
det

as . This implies that det has a zero of the order

at . Finally, the last inequality and (1.5) imply (1.31).
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1.6. The matrix function . Consider the matrix function

(1.36)

According to subsection 1.3 the matrix-valued function is smooth
and uniformly bounded for

Im and

Obviously for max. Integrating by parts in (1.36) and
using (1.18) we obtain

(1.37)

for all . Since supp min max we find

as max(1.38)
as min max(1.39)

min Im as min(1.40)

for all with Im and . The constants and depend only
upon , and . If we integrate the r.h.s. of (1.37) by parts, then (1.39)
and (1.40) imply

as min max(1.41)

min Im as min(1.42)

for all with Im and . The constants and depend
only upon , and .
In a similar way integrating by parts in (1.37), we obtain the asymptotical

decompositions

(1.43)
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as , Im . Here

as max(1.44)
as min max(1.45)

min Im as min(1.46)

The constants and depend upon , , and .
Since for all , integration by parts in (1.23)

and the inequalities (1.38), (1.41) and (1.42) give (1.26).

1.7. The matrix function . By using (1.16), (1.20) and Remark 1.1
for sufficiently large , Im , the matrix is
invertible for all and

for all Im(1.47)

with sufficiently large constants and .
Hence, for sufficiently large with Im the matrix function

(1.48)

is well defined for all . Liouville’s formula

ln det tr

implies

ln det tr

Since as max and

as , Im , we finally conclude that

ln det tr(1.49)

Im

Remark 1.2. Formula (1.49) is a matrix version of the corresponding well-
known identity for scalar Schrödinger operators (see e.g. 3 in [9]).



12 A. LAPTEV AND T. WEIDL

1.8. The asymptotical decomposition of . Next we shall develop
into an asymptotical series with respect to the inverse powers of .

For the sake of future references we compute the first three terms, although
we only need the second one in this paper.
If we apply (1.43) with , we find that

(1.50)

while (1.43) with , gives

(1.51)

Inserting (1.50) into (1.51) we obtain

(1.52)

Finally, if we insert in a similar way (1.52) and (1.43) with , as
well as , into (1.43) with and , we arrive at

(1.53)

As well as the terms , and satisfy the inequalities of the
type (1.44) – (1.46) with , , and , respectively. Then we
conclude that

tr

as with Im and thus,

tr tr tr

(1.54)

tr tr

as with Im .
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1.9. The dispersion formula. Let

be the finite set of the negative eigenvalues of (1.1). Each eigenvalue occurs
in this set only once. Let be the order of zero of det at the point

, which by section 1.5 equals the multiplicity of the corresponding
eigenvalue. Then the arguments in section 1.5 imply that the function

ln det(1.55)

is analytic for Im and continuous up to the boundary except ,
where it has at most a logarithmic singularity. Moreover, the inequality
(1.24) gives

for all sufficiently large , Im . Hence, by applying Cauchy’s
formula for large semi-circles in the upper half-plane we obtain

for arbitrary with Im . This implies
Re

(1.56)

which by (1.55) is equivalent to

ln det
ln det

ln(1.57)

for all with Im .

1.10. Trace formulae for elliptic systems. Note that

ln

(1.58)

as , Im . On the other hand from (1.13) and (1.26) we
have

ln det ln det
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as , for all . Hence, the integral in (1.57) permits the
asymptotical decomposition

ln det

ln det(1.59)

as , Im .
Combining (1.58), (1.59) with and (1.54) we obtain

tr(1.60)

tr(1.61)

tr tr(1.62)

Finally we remark, that in view of (1.13)
(1.63)
for all even, non-negative integers .

2. SHARP LIEB-THIRRING INEQUALITIES FOR SECOND ORDER
ONE-DIMENSIONAL SCHRÖDINGER TYPE SYSTEMS

2.1. A Lieb-Thirring estimate for finite systems. Let us first consider the
operator on the l.h.s. of (1.1) in for some smooth, compactly sup-
ported Hermitianmatrix potential . Preserving the notation of the previous
section the bounds (1.61) and (1.63) imply

tr tr(2.1)

By continuity (2.1) extends to all Hermitian matrix potentials, for which
tr is integrable. Finally, a standard variational argument allows one to
replace by its negative part :

tr tr(2.2)

The constant in the r.h.s. of this inequality is sharp and coincides with the
classical constant cl . In particular, this constant does not depend on the
internal dimension of the system.
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2.2. Operator-valued differential equations. Let be a separable
Hilbert space with the scalar product and the norm . Let

and be the Sobolev spaces of all functions

for which the respective norms

are finite. Finally, let be the identity operator on . Then the operator
defined on is self-adjoint in . It corresponds

to the closed quadratic form

with the form domain .
Let and respectively be the spaces of all bounded and compact lin-

ear operators on . Let denote the corresponding operator norm.
Consider an operator-valued function

for which , and , .
Denote

This form is well-defined on and

(2.3)

The constant does not depend upon or . Moreover, for all
there exists a finite constant , such that

(2.4)

Both (2.3) and (2.4) follow immediately from the corresponding inequali-
ties which hold in the scalar case. Hence, the quadratic form
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is semi-bounded from below and closed on . It induces a self-
adjoint semi-bounded operator

(2.5)

on .
If in addition for a.e. , then the form is relative

compact with respect to the metric on . In order to prove this
fact we introduce the orthogonal projections on the linear span of the
first elements of some fixed orthonormal basis in . As a consequence,
the Birman-Schwinger principle implies, that the negative spectrum of the
operator is discrete and might accumulate only to zero. In other words,
the operator is compact on .

2.3. A Lieb-Thirring estimate for operator-valued differential equa-
tions. We shall prove the following Theorem:

Theorem 2.1. Let be self-adjoint Hilbert-Schmidt operators on
for a.e. and let tr . Then we have

tr cl tr(2.6)

where according to (0.4) it holds cl .

Proof. Assume that (2.6) fails. Then there exists a non-positive operator
family satisfying tr and some sufficiently small ,
such that

tr tr(2.7)

Here

with being the spectral projection of onto the interval
. Since is compact, the operator is of a finite

rank .
Fix some orthonormal basis in and let be the projection on the

linear span of its first elements. Consider the auxiliary operators

Obviously we have rank for all . Since
turns to the identity operator on in the strong operator topology
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as , then the operators converge to in the
operator norm, as and

tr tr as

Thus,

tr tr(2.8)

for some sufficiently large . On the other hand, a standard variational
argument implies

tr tr

Observe that the expression on the r.h.s. is nothing else but the Riesz mean
of the order of the negative eigenvalues of the -system (1.1)
with . Thus, from (2.2) we obtain

tr tr tr

which contradicts (2.8). This completes the proof.

2.4. Lieb-Thirring estimates for Riesz means of negative eigenvalues of
the order . We shall now suppose, that the non-positive operator
family satisfies

tr for some(2.9)

Let be the spectral measure of the operator . Repeating the
arguments of Aizenman and Lieb [1], we find

tr tr

tr

tr
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where is the Beta function. Let be the
negative eigenvalues of . Then

tr

tr

From (0.4) we obtain

cl

and this implies

Theorem 2.2. Let the non-positive operator family satisfy (2.9).
Then

tr cl tr(2.10)

It remains to note, that the constant cl in (2.10) is approached for po-
tentials as .

3. LIEB-THIRRING ESTIMATES WITH SHARP CONSTANTS FOR
SCHRÖDINGER OPERATORS IN HIGHER DIMENSIONS

3.1. Lieb-Thirring estimates for Schrödinger operators. Let be a
separable Hilbert space. We consider the operator
(3.1)

in . If the family

of bounded self-adjoint operators on satisfies
max(3.2)

then the quadratic form
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is zero-bounded with respect to

This immediately follows from the corresponding scalar result and the argu-
ments given when proving the inequalities (2.3), (2.4). Hence the quadratic
form is semi-bounded from below, closed on the Sobolev
space and thus generates the operator (3.1). As in subsection
3.2 one can show, that if in addition to (3.2) we have for a.e.

, then the negative spectrum of the operator (3.1) is discrete.
The main result of this paper is

Theorem 3.1. Assume that for a.e. and that tr
is integrable for some . Then

tr cl tr(3.3)

Proof. We use the induction arguments with respect to . For ,
the bound (3.3) is identical to (2.10). Assume that we have (3.3)

for and all . Consider the operator (3.1) in the (external)
dimension . We rewrite the quadratic form for

as follows

The form is closed on for a.e. and it induces
the self-adjoint operator

on . The negative spectrum of this –dimensional
Schrödinger system is discrete, hence is compact on
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and according to our induction hypothesis tr satisfies the in-
equality

tr cl tr

(3.4)

for a.e. . For , the function tr is inte-
grable.
Let be the quadratic form corresponding to the opera-

tor on . Then we have
and

(3.5)

for all . According to section 2.2 the form on the r.h.s.
of (3.5) can be closed to and induces the self-adjoint operator

on . Then (3.5) implies

tr tr(3.6)

We can now apply (2.10) to the r.h.s. of (3.6) and in view of (3.4) we find

tr cl tr

cl cl tr

The calculation

cl cl

cl

completes the proof.
For the special case we obtain the Lieb-Thirring bounds for scalar

Schrödinger operators with the (sharp) classical constant cl for
in all dimensions .
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3.2. Lieb-Thirring estimates for magnetic operators. Following a re-
mark by B. Helffer [11] we demonstrate, how Theorem 3.1 can be extended
to Schrödinger operators with magnetic fields. Let

be a magnetic vector potential with real-valued entries . Put

Its form domain consists of the closure of all smooth compactly
supported functions with respect to (cf. [26]), where

Let the operator family and the corresponding form be defined as in
the previous subsection. If (3.2) is satisfied, then one can apply Kato’s
inequality [15, 26], and find that the form

(3.7)

is closed on and induces the self-adjoint operator

(3.8)

on . Finally, by applying Kato’s inequality to the higher-
dimensional analog of (2.3) we see, that for a.e. in
conjunction with (3.2) implies that has discrete negative spectrum.

Theorem 3.2. Assume that is a real vector field, and that
the non-positive operator family satisfies tr for some

. Then

tr cl tr(3.9)

Proof. In the dimension , anymagnetic field can be removed by gauge
transformation. Thus (2.10) can serve to initiate the induction procedure.
Assume now that (3.9) is known for all for the dimension

and consider the operator in the dimension . Put
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We find that

where for fixed the operator is the negative part of
on . We now choose a gauge in which vanishes.
Namely, put

and ˜ for all . Then

˜ ˜ ˜ ˜

(3.10)

where

acts on for any fixed . Closing the form on the r.h.s. of (3.10) we
see that

tr tr(3.11)

where the operator on the r.h.s. acts in . From our induction hy-
pothesis we have

tr tr cl tr

Hence (2.10) can be applied to estimate the r.h.s. of (3.11) and we complete
the proof of (3.9) in the same manner as in the proof of Theorem 3.1.

3.3. Lieb-Thirring estimates for the Pauli operator. As an application
of Theorem 3.2 we deduce a Lieb-Thirring type bound for the Pauli opera-
tor. Preserving the notations of the previous subsection we put and

. Let be a twice continuously dif-
ferentiable vector function with real-valued entries. The Pauli operator is
given by the differential expression

(3.12)
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where is the identity on , is the multiplication by a real-
valued scalar potential and

Let be the length of the vector curl . Then the two
eigenvalues of the perturbation of the term in (3.12) at some
point are given by

If for some , then Theorem 3.2 implies

tr cl(3.13)
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